以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:21 、訪客IP:3.142.250.86
姓名 盧明德(Ming-De Lu) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 聚噻吩和半導體氧化物奈米複合材料合成及應用於太陽能電池材料之研究
(Synthesis of polythiophene and semiconductor nanocomposite and application to solar cell material)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究主要包含三大部分,包含二氧化鈦奈米管與聚噻吩複合材料、溶膠凝膠法及電化學合成二氧化鈦與聚噻吩雙層奈米管、聚(3-己基噻吩)和半導體氧化物複合材料應用於太陽能電池。而在導電高分子太陽能材料上,半導體氧化物中為以奈米柱或奈米管結構為主,由研究中發現奈米柱或奈米管有利於電子-電洞分離,較有機會提升光電池效率,所以論文中半導體氧化物部分將以奈米管及奈米柱為主軸。
第一部分主要在於利用不同方法合成二氧化鈦奈米管與聚噻吩複合材料,並探討其間的交互作用及電荷轉移。首先利用二氧化鈦奈米顆粒,經過水熱法將其轉換成奈米管的結構,未經煆燒的二氧化鈦奈米管為非晶型,研究中發現經300 ℃煆燒後仍維持管狀結構及為anatase晶型,符合之後的研究目的。在複合材料部分為利用二氧化鈦奈米管與噻吩單體進行氧化聚合合成複合物,再利用XPS分析中發現確實有電荷轉移的現象。而因為二氧化鈦與聚噻吩兩者對溶劑的分散性相差極大且易分離,因此研究中亦將二氧化鈦改質後再橋接聚(3-己基噻吩),改善兩物質之間的相分離現象,並提高複合材料在有機溶劑中的穩定度及提升電荷轉移的效率。另外亦在二氧化鈦奈米管上改質,使表面上有-SH官能基,再利用-SH與金的親合性,使金離子吸附在二氧化鈦表面,之後利用Au3+與EDOT之間的氧化還原反應合成PEDOT-Au-TiO2奈米管複合物,並藉由調控Au3+的濃度來探討複合物形成的機制及三者之間扮演的角色,由XPS及TEM的結果中發現在低濃度的Au3+中,可以讓Au均吸附在TiO2奈米管表面,而使得PEDOT均可以附在TiO2奈米管表面,而在XRD結果中也未發現Au繞射峰。
第二部份主要為以具規則孔洞排列,均一孔洞大小的氧化鋁膜為模板,以溶膠凝膠法合成結晶性高的anatase晶型之二氧化鈦奈米管,在二氧化鈦奈米管中,再以電化學法合成PEDOT奈米管。此部分主要為探討在二氧化鈦及PEDOT在奈米孔道模板中自組裝現象,及將PEDOT規則化生成為奈米管的電性探討,並將利用XPS、EPR及導電度來探討雙層奈米管中兩物質的交互作用及電化學性質,而藉由參數的調控後,得到結構良好的雙層奈米管。
第三部份為聚(3-己基噻吩)與二氧化鈦或氧化鋅奈米柱太陽能材料的合成與光電特性分析。由於電子在奈米顆粒的移動速率較在奈米柱為慢且以跳躍的方式行進,因此研究中利用模板法合成二氧化鈦奈米柱,及利用晶種優選晶面的方式合成氧化鋅奈米柱,並探討二氧化鈦及氧化鋅表面型態對於元件效率的影響。研究中將二氧化鈦或氧化鋅奈米顆粒改以奈米柱取代後,確實提昇了P3HT的螢光消光效率,而在光電池量測時也發現P3HT/二氧化鈦奈米柱較P3HT/二氧化鈦奈米顆粒的效率為高,而使用氧化鋅奈米柱也較利用氧化鋅奈米顆粒能產生較高的Isc及Voc。摘要(英) This thesis mainly contains three major parts. Including polythiophene-TiO2 nanocomposite, bilayer tubes of poly(3,4-ethylenedioxythiophene) (PEDOT) and titania, poly(3-hexylthiophene) (P3HT)/semiconductor nanorod nanocomposite and application to solar cell material were described in thesis. The use of nanorod (or nanotube) result is demonstrated significantly to improve device performance, and that these improvements are caused partially by lower charge recombination, facilitating the electron transport. A major advantage of nanorod (or nanotube) as electron acceptors is their capability to generate continuous pathway, nanorod (or nanotube) structures so that a direct and ordered path for photogenerated electrons reaching the collecting electrode.
First part: A composite of polythiophene and TiO2 nanotubes was synthesized. The XPS spectra of the composites show that the Ti2p peak shifts to a lower binding energy and S2p peak shifts to a higher binding energy. The TGA results also show that phase segregation occurred when the nanocomposites contained 35 % polythiophene. A P3HT composite, grafted on TiO2 nanotubes, was synthesized. Photoluminescence (PL) measurements show that the emission intensity of P3HT mixed with TiO2 nanotubes was one third of that of random P3HT, while that of P3HT grafted onto TiO2 nanotubes was 10%. The results show that the P3HT grafted onto TiO2 nanotubes is more efficient in photoinduced charge transfer than a physical mixture of P3HT and TiO2 nanotubes, indicating this composite has potential for the fabricating hybrid organic-inorganic solid state solar cells. A nanocomposite of PEDOT and titania nanotube was synthesized, a silane containing a thiol group, (3-mercaptopropyl)trimethoxysilane was grafted on the surface of titania nanotube. AuCl4- then formed a self-assembled monolayer on the grafted nanotube. EDOT was used in situ polymerized by AuCl4-. TEM photographs show the TiO2 nanotube and PEDOT nanocomposite shows nanotube structure. The XPS and EDS results showed the nanocomposite contains gold.
Second part: Synthesis of bilayer tubes of PEDOT and TiO2 by electrochemical polymerization of PEDOT and chemical deposition of TiO2 in the pores of anodic alumina was reported. SEM photographs show the tubes of uniform diameters around 200 nm. TEM photographs confirm the formation of TiO2 and PEDOT bilayer tubes of 230 nm and 100 nm diameter, the thickness of outside TiO2 layer and inner PEDOT layer are around 20 nm under the experimental condition. The XPS spectra of the bilayer tubes show that the Ti2p peak shifts to a lower binding energy and S2p peak shifts to a higher binding energy. Electron diffraction patterns show that TiO2 nanotubes formed was single crystals of anatase phase.
Third part: The synthesis of semiconductor oxide nanorod, including TiO2 and ZnO were synthesized, TiO2 nanorods are prepared using the template method, involving the synthesis of TiO2 nanorods in the nanoholes of the membrane, involving the synthesis of TiO2 nanorods in the nanoholes of the membrane. ZnO rod arrays have been successfully synthesized on ITO glass substrate from the aqueous solution of Zn(NO3)2 and C6H12N4 (HMT). The PL quenching measurements reveal that the photo-induced electron transfer is more efficient in P3HT/TiO2 (or ZnO) nanorods than in the P3HT/TiO2 (or ZnO) nanoparticle film. The photovoltaic cells that are made from P3HT/TiO2 nanorod array have much higher power conversion efficiency than those made from P3HT/TiO2 nanoparticles. The photovoltaic cells that are made from P3HT/ZnO nanorod array have much higher Isc and Voc than those made from P3HT/ZnO nanoparticles.關鍵字(中) ★ 太陽能電池
★ 奈米複合物
★ 氧化鋅
★ 二氧化鈦
★ 導電高分子關鍵字(英) ★ solar cell
★ nanocomposite
★ ZnO
★ TiO2
★ conducting polymer論文目次 摘要.................................................................................................................................I
Abstract.......................................................................................................................III
目錄...............................................................................................................................V
圖目錄..........................................................................................................................IX
表目錄........................................................................................................................XII
第一章 緒論及文獻回顧..............................................................................................1
1.1 前言.........................................................................................................................1
1.2 二氧化鈦奈米管的簡介.........................................................................................2
1.2.1 陽極氧化法製備二氧化鈦奈米管...............................................................4
1.2.1.1 二氧化鈦奈米管的形成機制...........................................................5
1.2.2 模板法製備二氧化鈦奈米管.......................................................................7
1.2.3 化學法及水熱法製備二氧化鈦奈米管.......................................................8
1.3 氧化鋅的結構和性質...........................................................................................10
1.3.1 單軸成長機制.............................................................................................11
1.3.2 奈米氧化鋅製備方法.................................................................................13
1.3.2.1 溶膠-凝膠法(Sol-Gel Method) .....................................................13
1.3.2.2 水熱合成法(Hydrothermal Method).............................................13
1.3.3以水溶液法在基材上合成一維氧化鋅奈米陣列.....................................14
1.4 聚噻吩之簡介.......................................................................................................15
1.4.1 聚(3-烷基噻吩)簡介...................................................................................15
1.4.2 聚(3-烷基噻吩)的結構...............................................................................16
1.4.3 聚(3-烷基噻吩)的導電機制.......................................................................17
1.5導電高分子及半導體氧化物奈米複合材料........................................................18
1.6 太陽能電池之簡介...............................................................................................19
1.6.1 矽太陽能電池.............................................................................................19
1.6.2 有機太陽能電池.........................................................................................22
1.6.2.1 有機高分子太陽能電池................................................................23
1.6.2.2 有機∕無機奈米複合材料太陽能電池...........................................23
1.6.2.3 有機∕C60奈米複合材料太陽能電池............................................24
1.6.2.4 染料敏化太陽能電池....................................................................25
1.6.3 共軛高分子太陽能電池的工作原理.........................................................26
1.7 共軛高分子太陽能電池的演進...........................................................................28
1.7.1 單層結構.....................................................................................................28
1.7.2 電子供給/接受體雙層異質接面結構........................................................28
1.7.3 電子供給體摻混電子接受體單層異質接面結構.....................................28
1.7.4 高分子摻混無機半導體奈米材料之單層異質接面結構.........................30
1.8 研究動機...............................................................................................................32
第二章 二氧化鈦奈米管與聚噻吩複合物之研究....................................................34
第一部分 二氧化鈦奈米管之合成............................................................................34
2.1 前言.......................................................................................................................34
2.1.1 實驗....................................................................................................................34
2.1.1.1 實驗藥品..............................................................................................34
2.1.1.2 實驗方法..............................................................................................35
2.1.2 結果與討論........................................................................................................35
2.1.2.1 二氧化鈦奈米管之粉末X光繞射(XRD)分析....................................35
2.1.2.2二氧化鈦奈米管之穿透式電子顯微鏡分析........................................37
2.1.2.3二氧化鈦奈米管之BET法測量比表面積............................................39
2.1.3 結論....................................................................................................................42
第二部份 二氧化鈦奈米管與聚噻吩複合物............................................................43
2.2 前言.......................................................................................................................43
2.3 利用原位氧化聚合合成二氧化鈦奈米管與聚噻吩複合物...............................44
2.3.1 實驗.............................................................................................................44
2.3.1.1 實驗藥品.......................................................................................44
2.3.1.2 實驗方法.......................................................................................44
2.3.2 結果與討論.................................................................................................44
2.3.2.1 形貌分析........................................................................................44
2.3.2.2 結構分析........................................................................................46
2.3.2.2.1 粉末X光繞射(XRD)-晶體結構分析..........................46
2.3.2.2.2 紅外光譜儀-官能基結構分析......................................47
2.3.2.2.3 熱重分析-複合物分析..................................................48
2.3.2.2.4 X光光電子分析.............................................................49
2.3.3 結論.............................................................................................................52
2.4利用氧化聚合合成聚-3己基噻吩橋接於二氧化鈦奈米管................................53
2.4.1 實驗..............................................................................................................53
2.4.1.1 實驗藥品.........................................................................................53
2.4.1.2 實驗方法.........................................................................................54
2.4.1.2.1 二氧化鈦奈米管矽烷基化............................................54
2.4.1.2.2 矽烷基化之二氧化鈦奈米管與T3A反應...................54
2.4.1.2.3 聚(3-己烷基噻吩)橋接二氧化鈦奈米管......................54
2.4.2 結果與討論.................................................................................................55
2.4.2.1 形貌分析.........................................................................................55
2.4.2.2 結構分析.........................................................................................55
2.4.2.2.1 紅外線光譜分析.............................................................55
2.4.2.2.2 X光光電子分析..............................................................57
2.4.2.2.3熱重分析..........................................................................60
2.4.2.2.4 XRD分析.........................................................................63
2.4.2.3 光電化學性質.................................................................................63
2.4.3 結論..............................................................................................................68
2.5 自組裝合成TiO2奈米管與poly(3,4-ethylenedioxythiophene)複合物...............69
2.5.1 實驗..............................................................................................................70
2.5.1.1 實驗藥品.........................................................................................70
2.5.1.2 實驗方法.........................................................................................70
2.5.1.2.1 (3-mercaptopropyl)trimethoxysilane橋接二氧化鈦…...70
2.5.1.2.2 自組裝及原位聚合二氧化鈦與PEDOT複合物..........70
2.5.1.2.3 金與poly(3,4-ethylenedioxythiophene)複合物..............71
2.5.1.2.4二氧化鈦與PEDOT複合物............................................71
2.5.1.2.5 導電度量測.....................................................................71
2.5.2 結果與討論..................................................................................................72
2.5.2.1形貌分析..........................................................................................72
2.5.2.1.1 PEDOT- Au之形貌分析..................................................72
2.5.2.1.2 PEDOT- Au-TiO2奈米管之形貌及EDS分析................76
2.5.2.2 PEDOT- Au、PEDOT- Au-TiO2奈米管之FTIR分析......................78
2.5.2.3 PEDOT- Au、PEDOT-Au-TiO2奈米管之熱重分析........................79
2.5.2.4 PEDOT- Au、PEDOT-Au-TiO2奈米管之UV-Visible圖譜分析.…80
2.5.2.5 PEDOT- Au、PEDOT-Au-TiO2奈米管之XRD圖譜分析…...……81
2.5.2.6 PEDOT- Au、PEDOT-Au-TiO2奈米管之XPS圖譜分析…….…...83
2.5.2.7 PEDOT- Au、PEDOT-Au-TiO2奈米管之導電度分析….………...86
2.5.3 結論..............................................................................................................87
第三章 電化學合成二氧化鈦與PEDOT雙層奈米管之研究.................................88
3.1 前言.......................................................................................................................88
3.2 簡介.......................................................................................................................89
3.2.1 氧化鋁濾膜.................................................................................................89
3.2.2 導電高分子奈米管.....................................................................................91
3.2.3 無機氧化物奈米管.....................................................................................94
3.2.4 聚噻吩及PEDOT的電子自旋共振光譜...................................................96
3.3 實驗部份...............................................................................................................98
3.3.1 使用的材料及藥品.....................................................................................98
3.3.2樣品分析......................................................................................................98
3.4 二氧化鈦與聚二氧乙烯噻吩雙層奈米管之研究之合成與鑑定.....................100
3.4.1 二氧化鈦奈米管之合成...........................................................................100
3.4.1.1 二氧化鈦奈米管前趨物製備......................................................100
3.4.1.2 二氧化鈦奈米管之製備..............................................................101
3.4.2 聚二氧乙烯噻吩(PEDOT)奈米管之合成...............................................101
3.4.3 二氧化鈦與聚二氧乙烯噻吩(PEDOT)雙層奈米管之合成...................102
3.5 結果與討論........................................................................................................103
3.5.1 形貌分析..................................................................................................103
3.5.1.1 商業化氧化鋁濾膜.....................................................................103
3.5.1.2 二氧化鈦奈米管..........................................................................106
3.5.1.3 PEDOT奈米管.............................................................................108
3.5.1.4 PEDOT-TiO2雙層奈米管.............................................................109
3.5.2 結構及特性分析.......................................................................................111
3.5.2.1 紅外光譜儀-官能基結構分析.....................................................111
3.5.2.2 X光光電子光譜測試...................................................................113
3.5.2.3 PEDOT、PEDOT-TiO2奈米管的電性測試..................................115
3.5.2.4 PEDOT奈米管、PEDOT-TiO2奈米雙層管之電子自旋光譜…..118
3.6 結論.....................................................................................................................124
第四章 聚3-己基噻吩和半導體氧化物複合材料應用於太陽能電池之研究......125
4.1 前言.....................................................................................................................125
第一部份 P3HT/TiO2太陽能電池...........................................................................126
4.2 實驗.....................................................................................................................126
4.2.1 使用的材料及藥品...................................................................................126
4.2.2 實驗方法...................................................................................................126
4.2.2.1 自組裝PS孔洞之製備................................................................126
4.2.2.2 TiO2奈米柱陣列製備..................................................................126
4.2.2.3 TiO2奈米顆粒膜之製備..............................................................126
4.2.2.4 光電池元件製備.........................................................................127
4.3 結果與討論.........................................................................................................127
4.3.1 PS-b-PEO自組裝及PS多孔膜...............................................................127
4.3.2 二氧化鈦奈米柱陣列...............................................................................130
4.3.3 紅外線光譜分析.......................................................................................131
4.3.4 二氧化鈦之晶相分析...............................................................................132
4.3.5 光電化學性質分析...................................................................................133
4.3.6 螢光性質分析...........................................................................................137
4.3.7 太陽能電池光電效率分析.......................................................................139
4.4 結論.....................................................................................................................140
第二部份 P3HT/ZnO複合材料...............................................................................141
4.5 實驗.....................................................................................................................141
4.5.1使用的材料及藥品....................................................................................141
4.5.2 實驗方法...................................................................................................142
4.5.2.1氧化鋅溶膠凝膠前驅液................................................................142
4.5.2.2 ZnO的薄膜製備...........................................................................142
4.5.2.3 第二階段溶液製備-氧化鋅顆粒的成長.....................................142
4.5.2.4 光電池元件製備..........................................................................143
4.6 結果與討論.........................................................................................................143
4.6.1 ZnO形貌分析............................................................................................144
4.6.2 P3HT/ZnO形貌分析.................................................................................147
4.6.3 ZnO及P3HT/ZnO之結晶結構分析........................................................149
4.6.4 ZnO螢光分析............................................................................................150
4.6.5 P3HT在ZnO上的螢光消光效率.............................................................152
4.6.6 太陽能電池光電效率分析.......................................................................154
4.7 結論.....................................................................................................................156
第五章 總結..............................................................................................................158
個人著作....................................................................................................................160
參考文獻....................................................................................................................161
附錄............................................................................................................................168參考文獻 1. U. Diebold, Surf. Sci. Reports, 2003, 48, 53.
2. X. Quan, S. Yang, H. Zhao, Environ. Sci. Technol., 2005, 39, 3770.
3. O. K. Varghese, G. K. Mos, C. A. Grimes, Mater. Res. Soc. Symp. Proc., 2005, 828, 117.
4. O. K. Varghese, M. Paulose, C. A. Grimes, J. Nanosci. Nanotech., 2005, 5, 1158.
5. M. Paulose, K. Shankar, C. A. Grimes, J. Phys. D: Appl. Phys., 2006, 39, 2498.
6. C. J. Lin, W. Y. Yu, and S. H. Chien, Appl. Phy. Lett., 2007, 91, 233120.
7. H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, J. Phys. Chem. C, 2007, 111, 7235.
8. W. Chanmanee et al., Electrochem. Comm., 2007, 9, 2145.
9. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, J. Phys. Chem. B, 2006, 110, 16179.
10. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta., 1999, 44, 921.
11. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 2001, 16, 3331.
12. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Letters, 2005, 5, 191.
13. Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res., 2005, 20, 230.
14. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, J. Mater. Res., 2003, 18, 2588.
15. G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, Adv. Funct. Mater., 2005, 15, 1291.
16. J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int.Ed., 2005, 44, 2100.
17. J. Huang, T. Kunitake, S. Y. Onoue, Chem. Comm., 2004, 1008.
18. X. Liu, T. F. Jaramillo, J. Mater. Res. 2005, 20, 5.
19. P. Hoyer, Langmuir, 1996, 12, 1411.
20. A. Michailowski, D. Aimawlawi, G. Cheng, M. Moskovits, Chemical Physics Letters, 2001, 349, 1.
21. B. Poudel, W.Z. Wang, C. Dames, J.Y Huang, S. Kunwar, D.Z. Wang, D. Banerjee, G. Chen, Z.F. Ren, Mater. Res. Soc. Symp. Proc. 2005, Vol.826
22. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir. 1998, 14, 3160.
23. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett., 2004, 384, 372.
24. Z. Y. Yuan, B. L. Su, Colloids and Surfaces A: Phyicochen. Eng. Aspects, 2004, 241, 171
25. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. T. Yan, N. Wang, Appl. Phys. Lett. 2003, 82, 281.
26. Y. Q. Wang, G.Q.Hu, X. F. Duan, H.L Sun, Q.K. Xue, Chemical Physics Letters, 2002, 365, 427.
27. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir. 1998, 14, 3160.
28. D. S. Seo, J. K. Lee, H. Kim, Journal of Crystal Growth, 2001, 428.
29. M. Lazzeri, A. Vittadina, A. Selloni, Phys. Rev. B, 2001, 63 155406.
30. P. M. Oliver, G. W. Watson, E. T. Kelsey, S. C. Parker, Journal Mater. Chem. 1997, 7, 563.
31. D. Braun, A. J. Heeger, Appl. Phys. Lett., 1991, 58, 1982.
32. Y. Lan, X. Gao, H. Zhu, Z. Zheng, T. Yan, F. Wu, S. P. Ringer, D. Song, Adv. Func. Mater. 2005, 15 1310.
33. T. Akita, M. Okumura, K. Tanaka, K. Ohkuma, M. Kohyama, T. Koyanagi, M. Data, S. Tsubota, M. Haruta, Surface and Interface analysis, 2005, 37 265.
34. A. Mitra, R. K. Thareja, J. Appl. Phys, 2001, 89, 2025.
35. F. Caillaud, A. Smith, J.-M. Baumard, J, Eur. Ceram. Soc. 1990, 6, 313.
36. T. Tsuchida, S. Kitajima, Chem. Lett., 1990, 1769.
37. X. M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 2002, 78, 99.
38. S. J. Su, N. Kuramoto, Synth Met., 2000, 114, 147.
39. S. Kuwabata, N. Takahashi, S. Hirao, H. Yoneyama, Chem. Mater., 1993, 5, 437.
40. C. A. Ferreira, S. C. Domenech, P. C. Lacaze, J. Appl. Electrochem., 2001, 31, 49.
41. K. Kawai, N. Mihara, S. Kuwabata, H. Yoneyama, J. Electrochem. Soc., 1990, 137, 1793.
42. X. Ai, N. Anderson, J. Guo, J. Kowalik, L. M. Tolbert, T. Lian, J. Phys. Chem. B, 2006, 110, 25496.
43. Y. Zhang, C. Wang, L. Rothberg and M. K. Ng, J. Mater. Chem., 2006, 16, 3721.
44. M. Ilieva, S. Ivanov, V. Tsakova, J. Appl. Electrochem., 2008, 38, 63.
45. J. S. Ji, Y. J. Lin, H. P. Lu, L. Wang, S. P. Rwei, Thin Solid Films, 2006, 511 -512, 182.
46. 黃建昇,結晶矽太陽電池發展近況,工業材料雜誌2003, 203期, 150.
47. 李永龍,國立成功大學電機工程研究所碩士論文,1999.
48. L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, P. J. Brock, Appl. Phys. Lett., 1999, 74, 1132.
49. D. Braun, A. J. Heeger and H. Koremer, J. Electronic Materials, 1991, 20, 945.
50. D. Braun, A. J. Heeger, Appl. Phys. Lett., 1991, 58, 1982.
51. K. S. Narayan and Th. B. Singh, Appl. Phys. Lett., 1999, 74, 3456.
52. F. Hide, B. J. Schwartz, M. A. Diaz-Gracia and A. J. Heeger, Chem.Phys. Lett., 1996, 256, 424.
53. T. J. Savenije, J. M. Warman and A. Goossens, Chem. Phys. Lett., 1998, 287, 148.
54. L. H. Slooff, M. M. Wienk, J. M. Kroon, Thin Solid Films, 2004, 451-452, 634.
55. Y. Y. Lin, T. H. Chu, C. W. Chen and W. F. Su, Appl. Phys. Lett., 2008, 92, 053312.
56. T. Fromherz, F. Padinger, D. Gebeyehu, C. Brabec, J. C. Hummelen, N. S. Sariciftci, Sol. Energy Mater. Sol. Cells, 2000, 63, 61.
57. J. F. Eckert, J. F. Nicoud, J. F. Nierengarten, S. G. Liu, L. Echegoyen, F. Barigelletti, N. Armaroli, L. Ouali, V. Krasnikov and G. Hadziioannou﹐J. Am. Chem. Soc., 2000, 122, 7467.
58. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger , Science, 1995﹐270﹐1789.
59. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science, 2007, 317, 222.
60. F. Hurd and R. Livingston, J. Phys. Chem., 1940, 44, 865.
61. S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem., 1965, 69, 641.
62. S. Chaberek, A. Shepp and R. J. Allen ﹐J. Phys. Chem., 1965, 69, 2834.
63. Kearns et al., J. Am. Chem. Soc., 1967, 89, 5456.
64. H. Tsubomura, M. Matsumura, Y . Nomura and T. Amamiya, Nature, 1976, 261, 402.
65. B. O’ Regan, M. Grätzel, Nature, 1991, 353, 737.
66. H. Hoppe, N.S. Sariciftci, J. Mater. Res., 2004, 19, 1924.
67. P. Peumans, S.R. Forrest, Appl. Phys. Lett., 2001, 79, 126.
68. H. Kallmans, M. Pope, J. Chem. Phys, 1958, 30, 585.
69. A. K. Ghosh, T. Feng, J. App. Phys, 1978, 49, 5982.
70. C. W. Tang, Appl. Phy. Lett., 1986, 48, 183.
71. G. Yu, C. Zhang, A. J. Heeger, Appl. Phys. Lett., 1993, 64, 1540.
72. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett., 1996, 68, 3120.
73. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 1992, 258, 1474.
74. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett., 1993, 62, 585.
75. G. Yu, J. Gao, J. Hummelen, F. Wudl, A.J. Heeger, Science, 1995, 270, 1789.
76. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
77. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater., 2003, 13, 85.
78. G. Li, V. Shortriya, Y. Yao and Y. Yang, J. Appl. Phys, 2005, 98, 043704-1.
79. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, Nat. Mater., 2005, 4, 864.
80. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater., 2005, 15, 1617.
81. L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett., 2006, 88, 093511-1.
82. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater, 2006, 18, 789.
83. A. C. Arango, S. A. Carter, and P. J. Brock, Appl. Phys. Lett, 1999, 74, 1698.
84. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Mater, 2004, 16, 1009.
85. Y. Kang, D. Kim, Solar Energy Materials & Solar Cells, 2006, 90, 166.
86. A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter, H. Hörhold, Adv. Mater., 2000, 12, 1689.
87. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett., 2004, 384, 372.
88. G. P. Bartholomew, A. J. Heeger, Adv. Fun. Mater., 2005, 15, 677.
89. D. J. Milliron, L. Gur, A. P. Alivisatos, Mrs. Bull., 2005, 30, 41.
90. P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. van Gennip, P. Jonkheijm, R. A. J. Janssen, Adv. Mater., 2003, 15, 118.
91. D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, H. Schindler, Synth. Met., 2002, 125, 279.
92. J. Kruger, R. Plass, L. Cevey, M. Piccirelli, and M. Gratzel, Appl. Phys. Lett., 2001, 79, 2085.
93. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Nature (London), 1998, 395, 583.
94. A. C. Arango, S. A. Carter, and P. J. Brock, Appl. Phys. Lett., 1999, 74, 1698.
95. A. J. Breeze, Z. Schlesinger, S. A. Carter, and P. J. Brock, Phys. Rev. B, 2001, 64, 125205.
96. C. L. Huisman, A. Goossens, J. Schoonman, Synth. Met., 2003, 138, 237.
97. Q. Fan, B. McQuillin, D. D. C. Bradley, S. Whitelegg, A. B. Seddon, Chem. Phys. Lett., 2001, 347, 325.
98. Q. Qiao, J. T. McLeskey, Appl. Phys. Lett., 1999, 86, 153501.
99. C. L. Hisman, A. Goossens, J. Schoonman, Synth. Met., 2003, 138, 237.
100. A. Watanabe, A. Kasuya, Thin Solid Films, 2005, 483, 358.
101. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science, 2002, 295, 2425.
102. T. J. Savenije, J. M. Warman, and A. Goossens, Chem. Phys. Lett., 1998, 287, 148.
103. L. Pettersson, L. Roman, and O. Inganas, J. Appl. Phys., 1999, 86, 487.
104. E. M. E. Kristensen, F. Nederberg, H. Rensmo, T. Bowden, J. Hiborn, H. Siegbahn, Langmuir, 2006, 22, 9651.
105. H. J. Martin, K. H. Schulz, J. D. Bumgardner, K. B. Walters, Langmuir, 2007, 23, 6645.
106. M. R. Alexander and F. R. Jones, Carbon, 1996, 34, 1093.
107. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler, M. Porsch and J. Daub, Adv. Mater., 1995, 7, 551.
108. Q. D. Ling, S. L. Lim, Y. Song, C. X. Zhu, Daniel S.H. Chan, E. T. Kang, K. G. Neoh, Langmuir, 2007, 23, 312.
109. C. Dablemont, P. Lang, C. Mangeney, J. Y. Piquemal, V. Petkov, F. Herbst, G. Viau, Langmuir, 2008. on-line.
110. D. K. Hore, D. S. Walker, L. MacKinnon, G. L. Richmond, J. Phys. Chem. C 2007, 111, 8832.
111. F. Keller, M. S. Hunter, D. L. Robinson, J. Electrochem. Soc, 1953, 100, 411.
112. C. R. Martin, Science, 1994, 266, 1961.
113. C. R. Martin, Acc.Chem.Res., 1995, 28, 61.
114. J. C. Hulteen, C. R. Martin. , J.Mater.Chem. , 1997, 7, 1075.
115. D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, J. M. Xu, IEEE Trans. Electron Devices, 1996, 43, 1646.
116. H. Masuda and K. Fukuda, Science, 1995, 268, 1466.
117. H. Masuda and K. Fukuda, Jpn. J. Appl. Phys., 1996, 35, L126.
118. A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, J. Appl. Phys., 1998, 84, 6023.
119. H. Masuda, H. Yamada, M. Satoh and H. Asoh, Appl. Phys. Lett., 1997, 71, 2770.
120. C. N. Wu, K. J. Chao, T. G. Tsai, Y. H. Chiou, H. C. Shih, Adv. Mater., 1996, 8, 1008.
121. B. K. Pradhan, T. Toba, T. Kyotani, A. Tomita, Chem. Mater., 1998, 10, 2510.
122. T. Kyotani, L. F. Tsai, A. Tomita, Chem. Mater., 1996, 8, 2109.
123. J. Li, M. Moskovits, T. L. Haslett, Chem. Mater., 1998, 10, 1963.
124. M. J. Tierney, C. R. Martin., J. Phys. Chem., 1998,93, 2878.
125. J. H. Fan, M. X. Wan, D. B. Zhu, B. H. Chang, Z. W. Pan, S. S. Xe, J. Appl. Polymer Sci. , 1999, 74, 2605.
126. C. Downs, J. Nugent, P. M. Aiayan, D. J. Duguette, S. V. Santhanam, Adv. Mater., 1999, 11, 1028.
127. H. Q. Cao, C. Y. Tie, Z. Xu, J. M. Hong, H. Sang, Appl. Phys. Lett. , 2001, 78, 1592.
128. C. R. Martin. , Science, 1994, 266, 1961.
129. C. R. Martin. , Acc. Chem. Res., 1995, 8, 61.
130. J. C. Hulteen, C. R. Martin. , J. Mater. Chem., 1997, 7, 1075.
131. C. G. Wu, T. Bein. , Science, 1994, 264, 1757.
132. J. Lei, Z. Cai et al. , Synth. Met., 1992, 46, 53.
133. M. Delvaux, J. Duchet, P.Y. Stavaux, R. Legras and S. D. Champagne; Synth. Met., 2000, 113, 275.
134. A. Kros, R. J. M. Nolte and A. J. M. Sommerdijk; Adv. Mater. , 2002, 14, 23, 1779.
135. H. J.Qiu, M. X. Wan, B. Matthews, L. M. Dai, Macromolecules, 2001, 34, 675.
136. G. A. Ozin, Adv. Mater., 1992, 4, 612.
137. M. G. Kanatzidis, L. M. Tonge, T. J. Marks, H. O. Marcy, C. R. Kannewurf, J. Am. Chem. Soc., 1987, 109, 3797.
138. M. G. Kanatzidis, C. G. Wu, H. O. Marcy, C. R. Kannewurf, J. Am. Chem. Soc., 1989, 111, 4139.
139. T. Bein, P. Enzel, F. Beuneu, L. Zuppiroli, Adv. Chem. Ser., 1990, 226, 433.
140. C. R. Martin, Acc. Chem. Res., 1995, 259, 957.
141. C. Jerome, D. S. Champagne, R. Legras, R. Jerome, Chem. Eur. J. , 2000, 6, 3089.
142. C. G. Wu, T. Bein, Science, 1994, 266, 1013.
143. A. Michailowski, D. Aimawlawi, G. Cheng, M. Moskovits, Chemical Physics Letters, 2001, 349, 1.
144. J. Huang, T. Kunitake, S.Y. Onoue, Chem. Comm., 2004, 1008.
145. X. Liu, T. F. Jaramillo, J. Mater. Res., 2005, 205.
146. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta., 1999, 44, 921.
147. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 2001, 16, 3331.
148. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Letters, 2005, 5, 191.
149. Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res., 2005, 20, 230.
150. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, J. Mater. Res., 2003, 18, 2588.
151. G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, Adv. Funct. Mater., 2005, 15, 1291.
152. J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int.Ed., 2005, 44, 2100.
153. J. W. Jang, K. W. Lee, C. E. Lee, Solid. State Comm., 2004, 131, 697.
154. A. Zykwinska, W. Domagala, M. Lapkowski, Electrochem. Comm., 2003, 5, 603.
155. A. Zykwinska, W. Domagala, M. Lapkowski, Electrochimica. Acta, 2005, 50, 1625.
156. A. Zykwinska, W. Domagala, A. Czardybon, B. Pilawa, M. Lapkowski, Electrochimica. Acta, 2006, 51, 2135.
157. K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, G. D. Stucky, Adv. Funct. Mater., 2003, 13, 301.
158. K. M. Coakley and M. D. McGehee, Appl. Phys. Lett. 2003, 83, 3380.
159. Q. Wei, K. Hirota, K. Tajima, K. Hashimoto, Chem. Mater., 2006, 18, 5080.
160. S. H. Kim, M. J. Misner, T. Xu, M. Kimura, T. P. Russell, Adv. Mater., 2004, 16, 226.
161. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler, M. Porsch and J. Daub, Adv. Mater., 1995, 7, 551.
162. Q. D. Ling, S. L. Lim, Y. Song, C. X. Zhu, Daniel S.H. Chan, E. T. Kang, K. G. Neoh, Langmuir, 2007, 23, 312.
163. X. Ai, N. Anderson, J. Guo, J. Kowalik, L. M. Tolbert, T. Lian, J. Phys. Chem. B, 2006, 110, 25496.
164. R. D. McCullough and S. P. Williams, J. Am. Chem. Soc., 1993, 115, 11608.
165. M. Trznadel, A. Pron, M. Zagorska, R. Chrzaszcz, J. Pielichowski, Macrolecules, 1998, 31, 5051.
166. V. Dyakonov, Appl. Phys. A, 2004, 79, 21.
167. A. Ruseckas, E. Namdas, M. Theander, M. Svensson, A. Yartsv, D. Zigmantas, M. R. Andersson, O. Inganas, V. Sundstrom, Synth. Met., 2001, 119, 603.
168. A. Ruseckas, E. B. Namdas, T. Ganguly, M. Theander, M. Svensson, M. R. Andersson, O. Inganas, V. Sundstrom, J. Phys. Chem. B, 2001, 105, 7624.
169. http://www.solar-i.com/know.html#12
170. H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Phys. Rev. Lett., 1977, 39, 1098.指導教授 楊思明(Sze-Ming Yang) 審核日期 2008-7-6 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare