博碩士論文 91344001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:13.59.100.42
姓名 張清土(Ching Tu Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Au/MgxAlO hydrotalcite觸媒之製備與催化性質探討
(Preparation of Au/MgxAlO hydrotalcite catalysts and catalysis study)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以共沉澱法製備不同Mg/Al比例的MgxAlO-hydrotalcite,經不同溫度煅燒後做為製備金觸媒的擔體,並以沉澱沉積法製備2%Au/MgxAlO觸媒。本研究有系統地以CO氧化反應、富氫中CO選擇性氧化及α、β-不飽和醛選擇性氫化反應探討製備變因對金觸媒活性的影響,藉以篩選出最佳製備條件,製備變因包括熟化溫度、熟化時間、Au溶液pH、Au溶液濃度、Mg/Al比、擔體煅燒溫度及觸媒煅燒溫度,另以BET、ICP、XRD、UV-vis、TGA、TEM、XPS及in situ DR-FTIR等分析,瞭解其物理與表面性質。
不論CO氧化反應、富氫中CO選擇性氧化或α、β-不飽和醛選擇性氫化反應,2%Au/Mg2AlO(100)觸媒最適製備條件是不預先調整金溶液的起始pHi值(pHi值為2)、金溶液濃度在1×10–3 M、Mg/Al = 2 (Mg2AlO)經100°C乾燥後做為製備金觸媒的擔體及2%Au/Mg2AlO(100)觸媒經100°C乾燥。在製備變因的探討中,吾人發現除了金負載量外,Au3+/Au0比值扮演重要角色,隨著2%Au/Mg2AlO(100)觸媒表面Au3+/Au0比值遞減,觸媒於CO氧化反應、富氫中CO選擇性氧化及肉桂醛選擇性氫化反應活性/選擇率也隨之遞減。2%Au/Mg2AlO(100)觸媒經100°C煅燒,表面有最高Au3+/Au0比值,於CO氧化反應、富氫中CO選擇性氧化及肉桂醛選擇性氫化反應中皆有最佳活性,且有最佳肉桂醇選擇率。2%Au/Mg2AlO(100)觸媒以升溫方式進行CO選擇性氧化後,Au3+/Au0比值由原來的1.2提升至1.5,反向降溫進行反應,觸媒維持高活性至室溫。
Mg2AlO(100)擔體與2%Au/Mg2AlO(100)觸媒經100°C及300°C煅燒後,分別在無氧(CO/He)及有氧(CO/O2/He)的氣氛下進行in situ DR-FTIR光譜分析,間接證明經100°C煅燒擔體表面有較活潑的OH基可與CO反應產生CO2,經300°C煅燒之擔體表面,則失去活潑OH基可參與反應;於100°C煅燒觸媒,觀察到CO吸附於Au3+及Au0,間接證明CO氧化反應與Au3+/Au0比值有關。此外,將2%Au/Mg2AlO(100)觸媒於程溫選擇性氧化反應下進行in-situ DR-FTIR動態分析,觀察到OH基與CO2的吸收帶同時增強,間接證明反應過程產生的OH基與CO氧化反應有關。
本研究藉CO氧化反應及選擇性氧化反應,與XPS及FTIR分析提出2%Au/Mg2AlO(100)觸媒於CO氧化反應機制。CO吸附在Au0上,與Au3+-OH反應產生Au-COOH;氧在Au0上解離吸附成Au0-O;Au-COOH與Au0-O的氧原子反應生成Au-CO3H中間體,並分解成CO2與OH基。同時Au-COOH也可能與Mg2AlO擔體的OH基反應,產生CO2和H2O,H2O回補OH基至擔體上,OH基也能溢流至Au3+上,維持Au3+的價態。
反應物分子於2%Au/Mg2AlO(100)觸媒表面之吸附作用力不同於一般金屬觸媒,於肉桂醛選擇性氫化行為也不同,本質上優先選擇性氫化共軛C=C/C=O中C=O鍵,但不會繼續氫化C=C鍵成全氫化產物。達到完全反應,肉桂醇產率為84%。2%Au/Mg2AlO(100)觸媒於不同官能基之氫化活性依序為C=C/C=O(不飽合醛) > C=O(飽合醛) >> C=C(不飽合醇),此與第Ⅷ族金屬觸媒催化性質迴異。反應物分子於金觸媒表面吸附作用力為偶極作用力與瞬間偶極作用力,而非共價作用力。共軛C=C/C=O鍵因共振產生非定域化(delocalization)的瞬間偶極Cδ+ Oδ--Cδ+ Oδ-,其在金觸媒表面吸附強度大於具偶極的C=O鍵,且遠大於具偶極的C=C鍵。
2%Au/Mg2AlO(100)觸媒於肉桂醛氫化反應中,隨著反應溫度及反應壓力提升,反應速率明顯提升,但不同於第Ⅷ族金屬觸媒,肉桂醇選擇率隨溫度升高而提升,且肉桂醇選擇率不因提升反應壓力而降低。溶劑效應中,不同於第Ⅷ族金屬觸媒,金觸媒對於氫氣吸附解離能力遠不及第Ⅷ族金屬觸媒,氫氣於溶劑中的溶解度對於金觸媒催化活性影響勝於其他因素,所以溶劑效應完全不同於第Ⅷ族金屬觸媒。氫氣於非極性溶劑環己烷及正己烷中的溶解度大於醇類極性溶劑,2%Au/Mg2AlO(100)觸媒於肉桂醛氫化反應活性,活性大小依序為環已烷 ≈ 正己烷 > 乙醇。
摘要(英) In this investigation, hydrotalcites MgxAlO with various Mg/Al molar ratios were prepared by co-precipitation, and gold catalysts containing 2 wt% Au (2%Au/MgxAlO) were prepared by deposition precipitation (DP). The effect of various parameters on the preparation of catalysts, including the temperature and the duration of aging, the pH and the concentration of HAuCl4 in the initial gold solution, the Mg/Al molar ratio and the calcination temperatures of the MgxAlO support, and the calcination temperatures of the Au/MgxAlO catalysts for CO oxidation, CO selective oxidation and hydrogenation of α,β-unsaturated aldehydes were systematically discussed. The catalysts were characterized by the specific surface areas analysis (SBET), inductively coupled plasma spectroscopy (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), thermogravimetry (TGA), X-ray photoelectron spectroscopy (XPS), and in situ diffuse reflection Fourier transform infrared spectroscopy (in situ DR-FTIR).
The optimal catalyst, 2%Au/Mg2AlO(100), was obtained using the following preparation parameters: 1 × 10–3 M HAuCl4, pH = 2 (without adjusting pH) in the initial solution, Mg/Al = 2 (Mg2AlO) calcined at 100°C as a support, and 2%Au/Mg2AlO catalyst calcined at 100°C for CO oxidation, CO selective oxidation and hydrogenation of α,β-unsaturated aldehydes. This investigation confirms that not only gold loading of the catalyst is important, the ratio of gold states (Au3+/Au0) is also critical in determining the activity of the catalyst, and the activity declined markedly as the Au3+/Au0 ratio decreased for CO oxidation, CO selective oxidation and hydrogenation of α,β-unsaturated aldehydes. As the 2%Au/Mg2AlO(100) catalyst had the largest Au3+/Au0 ratio, the activity of the catalyst and the selectivity of cinnammyl alcohol is also highest. The activity of this optimal catalyst was improved through CO selective oxidation pretreatment and the Au3+/Au0 ratio increased from 1.2 to 1.5.
In situ DR-FTIR were performed to investigate Mg2AlO(100) and 2%Au/Mg2AlO(100) catalyst calcined at 100 and 300°C, respectively, in the presence(CO/O2/He) or absence(CO/He) of O2. Undoubtedly, the formation of CO2 in an oxygen-free environment resulted from the reaction between CO and the active OH groups on Mg2AlO calcined at 100 °C. On the other hand, those Mg2AlO calcined at 300°C have no active OH groups to participate in the reaction. 2%Au/Mg2AlO(100) catalyst calcined at 100°C had adsorption of CO on Au0 and Au3+. These results demonstrate that the CO oxidation reaction may be related to the Au3+/Au0 ratio. Otherwise, for 2%Au/Mg2AlO catalyst during the programmed temperature reaction of selective oxidation of CO could be observed that the absorption intensity of the OH group CO2 increased with the temperature to a maximum at 45°C. These results demonstrate that the generation of CO2 may be related to the formation of the OH groups during the reaction.
Based on XPS and in situ DR-FTIR analyses, a mechanism for CO selective oxidation on 2%Au/Mg2AlO was proposed. The hydroxyl group on Mg2AlO also participated in the reaction. CO is adsorbed on Au0 and reacts with Au3+-OH to form carboxylate group. Oxygen on Au0 dissociates to form Au0-O. The carboxylate group reacts with the oxygen of Au0-O to form the bicarbonate intermediate which then dissociates into CO2 and OH radical. Simultaneously, the carboxylate group may also react with the OH group on Mg2AlO to form CO2 and H2O. The adsorption of OH groups on Au3+ and the replenishment of OH groups by H2O did not change the stability of Au3+ on the 2%Au/Mg2AlO catalyst, maintaining a Au3+/Au0 ratio that is suitable for the reaction.
The interaction forces of reactant molecules adsorbed on 2%Au/Mg2AlO(100) catalyst surface are different from that of conventional metal catalysts, and so is their selective hydrogenation behavior for α,β-unsaturated aldehydes; intrinsically more active in the hydrogenation of the C=O bond as compared to the hydrogenation of the C=C bond, but further hydrogenation of the C=C bond to 3-phenylpropanol is not likely. For complete reaction, the yield of cinnammyl alcohol is about 84% from the hydrogenation of cinnamaldehyde and a high yield of nerol/geraniol was obtained over the 2%Au/Mg2AlO catalysts. The order of hydrogenation activity for different function groups over 2%Au/Mg2AlO(100) catalysts is C=C/C=O(unsaturated aldehydes) > C=O(saturated aldehydes) >> C=C(unsaturated alcohol), which is irrelevant to the activity of the metal catalysts in Ⅷ groups. The interaction forces of reactant molecules adsorbed on the gold catalyst surface is dipole-dipole interaction and instantaneous dipole interaction (dispersion force) rather than non-covalence interaction. The delocalization instantaneous dipole Cδ+ Oδ--Cδ+ Oδ- resulted from the resonance of conjugate C=C/C=O bond has made its adsorption on the gold catalyst surface stronger than that of dipole C=O bond, and even stronger than that of dipole C=C bond.
In the hydrogenation of cinnamaldehyde by 2%Au/Mg2AlO(100) catalyst, reaction rate was improved significantly as the reaction temperature and pressure was increased. Same trend was observed for the selective hydrogenation of cinnammyl alcohol, however, this is different from that of metal catalysts in the Ⅷ group. Under solvent effect, hydrogen adsorption dissociation ability of gold catalyst is much weaker than that of metal catalyst in the Ⅷ groups. The solubility of hydrogen in the solvent has a huge influence on the activity of gold catalyst comparing with other factors, therefore, the solvent effect of gold is completely different from that of metal catalysts in the Ⅷ groups. The solubility of hydrogen in the nonpolar solvent, such as cyclohexane and n-hexane, is bigger than that in polar solvent like alcohols. As the result, the activivty of 2%Au/Mg2AlO(100) catalyst for the hydrogenation of cinnamaldehyde is in the order of cyclohexane ≈ n-hexane > alcohol.
關鍵字(中) ★ 共沉澱法
★ 選擇性氧化
★ 肉桂醇
★ α、β-不飽和醛
★ MgxAlO-hydrotalcite
關鍵字(英) ★ β-unsaturated aldehydes
★ MgxAlO-hydrotalcite
★ α
★ cinnammyl alcohol
★ selective oxidation
★ deposition precipitation
論文目次 第一章 緒論 1
第二章 文獻回顧 4
2-1 金觸媒 4
2-1-1 金的表面化學 4
2-1-2 金觸媒的發展史 5
2-2 觸媒的製備 6
2-2-1 製備的方法 6
2-2-2 其他方法 9
2-3 Mg/Al hydrotalcites擔體 12
2-3-1 Mg/Al hydrotalcite之製備 12
2-3-2 Mg/Al hydrotalcite結構性質 13
2-3-3 Mg/Al hydrotalcite熱處理前後之性質 14
2-3-4 Mg/Al hydrotalcite觸媒相關性質 15
2-4 觸媒的CO氧化反應 16
2-4-1 金的活性狀態 16
2-4-2 CO的氧化反應機制 22
2-5 氫中CO選擇性氧化反應 28
2-5-1 燃料電池的發展背景 28
2-5-2 CO選擇性氧化觸媒 31
2-6 肉桂醛選擇性氫化反應 33
2-6-1 金觸媒的催化性質 35
2-6-2 鉑金屬觸媒的催化性質 38
2-6-3 第Ⅷ族過渡金屬的催化性質 43
第三章 實驗方法與設備 44
3-1 擔體與觸媒製備 44
3-1-1 MgAlO-hydrotalcite (HT(χ))擔體之製備 44
3-1-2 Au觸媒製備 44
3-2 擔體與觸媒性質鑑定 46
3-2-1 元素組成分析 46
3-2-2 比表面積測定 46
3-2-3 X-射線繞射分析(XRD) 47
3-2-4 X-射線光電子光譜(XPS) 47
3-2-5 穿透式電子顯微鏡(TEM) 48
3-2-6 紫外光可見光吸收光譜儀(UV-vis) 49
3-2-7 原位漫反射傅利葉紅外線光譜儀(In siu DR-FTIR) 49
3-3 反應活性測定 50
3-3-1 CO氧化反應 50
3-3-2 富氫中CO選擇性氧化反應 51
3-3-3 α, β-不飽和醛之選擇性氫化 51
3-4 實驗藥品及氣體 56
第四章 CO氧化反應之活性探討 60
4-1 熟化時間與熟化溫度對催化活性的影響 61
4-2 金溶液pH的影響 64
4-3 金溶液濃度的影響 68
4-4 MgxAlO擔體Mg/Al比值對反應活性的影響 72
4-5 Mg2AlO-hydrotalcite擔體煅燒溫度的影響 75
4-6 觸媒煅燒溫度對反應活性的影響 82
4-7 金的負載量對反應活性的影響 87
4-8 觸媒前處理對反應活性的影響 87
第五章 富氫氣體中CO選擇性氧化反應之活性探討 90
5-1 觸媒製備變因對活性的影響 90
5-2 煅燒溫度對活性的影響 95
5-2-1 擔體煅燒溫度對活性的影響 95
5-2-2 觸媒煅燒溫度對活性的影響 95
5-3 觸媒前處理對反應活性的影響 99
5-4 In-situ DR-FTIR光譜分析 103
5-4-1 CO/He與CO/O2/He氣氛下之In-situ DR-FTIR光譜分析 103
5-4-2 選擇性氧化於In-situ DR-FTIR研究 105
第六章 肉桂醛選擇性氫化反應之活性探討 111
6-1 觸媒製備變因對活性的影響 112
6-1-1 MgxAlO擔體Mg/Al比值對反應活性的影響 112
6-1-2 Mg2AlO-hydrotalcite擔體煅燒溫度的影響 114
6-1-3 觸媒煅燒溫度對反應活性的影響 114
6-2 反應條件之影響 122
6-2-1 壓力效應 123
6-2-2 溫度效應 125
6-2-3 溶劑效應 127
第七章 結論 131
總 結 134
參考文獻 135
參考文獻 [1] M. Harauta, N. Yamada, T. Kobayashi, S. Ijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal. 115 (1989) 301–309.
[2] C. Milone, R. Ingoglia, S. Galvagno, “Gold supported on iron oxy-hydroxides: a versatile tool for the synthesis of fine chemicals”, Gold. Bull. 39 (2006) 54–65.
[3] C. Peter, “Heterogeneously catalysed hydrogenation using gold catalysts”, Appl. Catal. A: Gen. 291 (2005) 222–229.
[4] R. J. H. Grisel, B. E. Nieuwenhuys, “Selective oxidation of CO over supported Au catalyst”, J. Catal. 199 (2001) 48–59.
[5] R. J. H. Grisel, C. J. Westsrate, A. Goossens, M. W. J. Craje, A. M. Kraan, B. E. Nieuwenhuys, “Oxidation of CO over Au/MOX/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catal. Today 72 (2002) 123–132.
[6] F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, “FTIR study of the low temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts”, J. Catal. 188 (1999) 176–185.
[7] J. Hua, K. Wei, Q. Zheng, X. Lin, “Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water-gas shift reaction”, Appl. Catal. A: Gen. 259 (2004) 121–130.
[8] A. Ueda, M. Haruta, “Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts”, Gold. Bull. 32 (1999) 3–11.
[9] M. A. Debeila, N. J . Coville, M. S. Scurrell, G. R. Hearne, M. J. Witcomb, “Effect of pretreatment variables on the reaction of nitric (NO) with Au-TiO2: DRIFTS studies”, J. Phys. Chem. B 108 (2004) 18254–18260.
[10] S. Scire, S. Minico, C. Crisafulli, C. Satriano, A. Pistone, “Effect of pretreatment variables on the reaction of nitric oxide with Au-TiO2: DRIFTS studies”, Appl. Catal. B: Environ. 40 (2003) 43–49.
[11] S. Minio, S. Scire, C. Crisafulli, S. Galvagno, “Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts”, Appl. Catal. B: Environ. 34 (2001) 277–285.
[12] A. V. W. Janssens, A. Carlsson, A. Puig-Molina, B. S. Clausen, “Relation between nanoscale Au particccle structure and activity for CO oxidation on supported gold catalysts”, J. Catal. 240 (2006) 108–113.
[13] M. S. Chen, D. W. Goodman, “Structure-activity relationships in supported Au catalysts”, Catal. Today 111 (2006) 22–33.
[14] M. Mavrikakis, P. Stoltze, J. K. Norskov, “Making gold less noble”, Catal. Lett. 64 (2000) 101–106.
[15] N. Lopez, T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J. K. Nørskov, “On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation”, J. Catal. 223 (2001) 232–235.
[16] N. Weiher, E. Bus, L. Delannoy, C. Louis, D. E. Ramaker, J. T. Miller, J. A. V. Bokhoven, “Structure and oxidation state of gold on different supports under various CO oxidation conditions”, J. Catal. 240 (2006) 100–107.
[17] Z. P. Liu, X. Q. Gong, J. Kohanoff, C. Sanchez, P. Hu, “Catalytic role of metal oxide in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au”, Phys. Rev. Lett. 91 (2003) 266102–1–266102–4.
[18] A. I. Kozlov, A. P. Kozlova, K. Asakura, Y. Matsui, T. Kogure, T. Shido, Y. Iwasawa, “Supported gold catalysts prepared from a gold phosphine precursor and as-precipitated metal-hydroxide precursors: Effect of preparation conditions on the catalytic performance”, J. Catal. 196 (2000) 56–65.
[19] L. Fan, N. Ichikuni, S. Shinazu, T. Uematsu, “Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation”, Appl. Catal. A: Gen. 246 (2003) 87–95.
[20] J. D. Grunwaldt, C. Kiener, C. Wogerbauer, A. J. Baiker, “Preparation of supported gold catalysts for low temperature CO oxidation via size-controlled gold colloids”, J. Catal. 181 (1999) 223–232.
[21] R. Zanella, L. Delannoy, C. Louis, “Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea”, Appl. Catal. A: Gen. 291 (2005) 62–72.
[22] S. Ivanova, C. Petit, V. Pitchon, “A new preparation method for the formation of gold nanoparticles on an oxide support”, Appl. Catal. A: Gen. 267 (2004) 191–201.
[23] A. I. Kozlov, A. P. Kozlova, H. Lin, Y. Iwasawa, “A new approach to active supported Au catalysts”, Appl. Catal. A: Gen. 182 (1999) 9–28.
[24] D. Wang, Z. Hao, D. Cheng, X. Shi, C. Hu, “Influence of pretreatment conditions on low temperature CO oxidation over Au/MOx/Al2O3 catalysts”, J. Mole. Catal. A: Chem. 200 (2003) 229–238.
[25] A. Wolf, F. Schuth, “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: Gen. 226 (2002) 1–13.
[26] I. Dobrosz, K. Jiratova, V. Pitchon, J. M. Rynkowski, “Effect of the preparation of supported particles on the catalytic activity in CO oxidation reaction”, J. Mole. Catal. A: Chem. 234 (2005) 187–197.
[27] F. Moreau, G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents”, J. Catal. 231 (2005) 105–114.
[28] S. Ivanova, V. Pitchon, C. Petit, H. Herschbach, A. V. Dorsselaer, E. Leize, “Preparation of alumina supported gold catalysts: gold complexes genesis, identification and speciation by mass spectrometry”, Appl. Catal. A: Gen. 298 (2006) 203–210.
[29] W. C. Li, M. Comotti, F. Schuth, “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation”, J. Catal. 237 (2006) 190–196.
[30] V. Schwartz, D. S. Mullins, “XAS study of Au supported on TiO2: influence of oxidation state and particle size on catalytic activity”, J. Phys. Chem. B 108 (2004) 15782–15790.
[31] J. C. Fierro-Gonzalez, B. C. Gate, “Oxidation states of gold in MgO-supported complexes and clusters: Characterization by X-ray absorption spectroscopy and temperature programmed oxidation and reduction”, J. Phys. Chem. B 107 (2003) 2242–2248.
[32] R. P. Nnikrishnan, D. Sarojini, “Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide”, Appl. Catal. A: Gen. 299 (2006) 266–273.
[33] T. Daniells, A. R. Overweg, M. Makkee, J. A. Moulijn, “The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined Mössbauer, FT-IR, and TAP reactor study”, J. Catal. 230 (2005) 52–65.
[34] M. M. Schubert, S. Hackenberg, A. C. V. Veen, M. Muhler, V. Plzak, R. J Behm, “CO oxidation over supported gold catalysts–inert and active support materials and their role for the oxygen supply during reaction”, J. Catal. 197 (2001) 113–122.
[35] D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, A. Travlos, “Low temperature water-gas shift reaction over Au/CeO2 catalysts”, Catal. Today 72 (2002) 51–57.
[36] J. L. Margitfalvi, A. Fasi, M. Hegeds, F. Lonyi, S. Gbolos, N. Bogdanchikova, “Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation”, Catal. Today 72 (2002) 157–169.
[37] S. J. Lee, A. Gavriilidis, “Supported Au catalysts for low temperature CO oxidation prepared by impregnation”, J. Catal. 206 (2002) 305–313.
[38] 李東穎,「Pd (Ni)/hydrotalcite觸媒於苯酚一步合成還己酮之研究」, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1997).
[39] 蔡俊煌, 「Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究」, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2002).
[40] 廖志偉, 「一步合成甲基異丁基酮之多功能觸媒研究-Pd (Ni)/hydrotalcite」, 中大化工所碩士論文 (1996).
[41] A. Manasilp, E. Gulari, “Selective CO oxidation over Pt/alumina catalysts for fuel cell application”, Appl. Catal. B: Environ 37 (2002) 17–25.
[42] P. V. Snytnikov, V. A. Sobyanin, V. D. Belyaev, P. G. Tsyrulnikov, N. B. Shitova, D. A. Shlyapin, “Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts”, Appl. Catal. A: Gen. 239 (2003) 149–156.
[43] F. Marino, C. Descorme, D. Duprez, “Novle metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX)”, Appl. Catal. B: Environ 54 (2004) 59–66.
[44] G. Avgouropoulos, T. Ioannides, C. Padopoulou, J. Batista, S. Hocevar, H. K. Matralis, “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, Catal. Today 75 (2002) 157–167.
[45] M. J. Kahich, H. A. Gasteiger, R. J. Behm, “Kinetics of selective CO oxidation in H2-rich gas on Pt/Al2O3”, J. Catal. 171 (1997) 93–105.
[46] D. H. Kim, M. S. Lim, “Kinetics of selective CO oxidation in hydrogen-rich mixtures on Pt/alumina catalysts”, Appl. Catal. A: Gen. 224 (2002) 27–38.
[47] M. M. Schubert, M. J. Kahlich, H. A. Gasteiger, R. J. Behm, “Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: an in-situ DRIFTS study”, J. Power Sources 84 (1999) 175–182.
[48] X. Liu, O. Korotkikh, R. Farrauto, “Selective catalytic oxidation of CO in H2: Structure study of Fe oxide-promoted Pt/alumina catalyst”, Appl. Catal. A: Gen 226 (2002) 293–303.
[49] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, “Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite”, Appl. Catal. A: Gen 159 (1997) 159–169.
[50] M. J. Kahlich, H. A. Gasteiger, R. J. Behm, “Kinetics of the selective low-temperature oxidation of CO in H2-rich gas over Au/α-Fe2O3”, J. Catal. 182 (1999) 430–440.
[51] R. M. T. Sanchez, A. Ueda, K. Tanaka, M. Haruta, “Selective oxidation of CO in hydrogen over gold supported on manganese oxides”, J. Catal. 168 (1997) 125–127.
[52] A. Luengnaruemitchai, S. Osuwan, E. Gulari, “Selective catalytic oxidation of CO in the presence of H2 over gold catalyst”, Inter. J. Hydrogen Energy 29 (2004) 429–435.
[53] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones”, Appl. Catal. A: Gen. 149 (1997) 27–48.
[54] N. Mahata, F. G. Alves, M. F. R. Pereira, J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst”, Appl. Catal. A: Gen. 339 (2008) 159–168.
[55] C. Mohr, P. Claus, “Hydrogenation properties of supported nanosized gold particles”, Sci. Prog. 84 (2001) 311–334.
[56] R. Meyer, C. Lemire, Sh. K. Shaikhutdinow, H. J. Freund, “Surface chemistry of catalysis by gold”, Gold Bulletin. 37 (2004) 72–124.
[57] D. J. Gorin and F. D. Toste, Nature. 446 (2007) 395–403.
[58] G. C. Bond, “Gold: A relatively new catalyst”, Catal. Today 72 (2002) 5–9.
[59] J. T. Miller, A. J. Kropf, Y. Zha, J. R. Regalbuto, L. Delannoy, C. Louis, E. Bus, J. A. van Bokhoven, “The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts”, J. Catal. 240 (2006) 222–234.
[60] M. Haruta, “Catalysis of gold nanoparticles deposited on metal oxides”, CATTECH 6(3) (2002) 102–115.
[61] A. G. Sault, R. J. Madix, C. T. Campbell, “Adsorption of oxygen and hydrogen on Au(110)-(1 × 2)”, Surf. Sci. 169 (1986) 347–356.
[62] P. Buffet, J-P. Borel, “Size effect on the melting temperature of gold particles”, Phys. Rev. A. 13 (1976) 2287–2298.
[63] G. C. Bond, P. A. Sermon, “Gold catalysts for olefin hydrogenateon”, Gold Bull. 6 (1976) 102–105.
[64] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, J. Genet, B. Delmon, “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, Co3O4,”, J. Catal. 144 (1993) 175–192.
[65] M. Haruta, “When gold is not noble: Catalysis by nanoparticles”, The Chem Record 3 (2003) 75–87.
[66] H. Y. Tsai. Y. D. Lin, W. T. Fu, S. D. Lin, “The activation of supported Au catalysts prepared by impregnation”, Gold. Bulletin. 40/3 (2007) 184–191.
[67] V. Ponec, G. C. Bond, “Catalysis by metals and alloys”, Elsevier, Amsterdam, 1996.
[68] F. B. Li, X. Z. Li, “Photocatalytic properties of gold/gold ion-modified titanium dioxide for waste treatment”, Appl. Catal. A: Gen. 228 (2002) 15–27.
[69] E. Seker, E. Gulari, “Single step sol–gel made gold on alumina catalyst for selective reduction of NOx under oxidizing conditions: effect of gold precursor and reaction conditions”, Appl. Catal. A: Gen. 232 (2002) 203–217.
[70] D. D. Smith, L. A. Snow, L. Sibille, E. Ignont, “Tunable optical properties of metal nanoparticle sol–gel composites”, J. Non-Cryst. Solids 285 (2001) 256–263.
[71] G. Lu, R. Zhao, G. Qian, Y. Qi, X. Wang, J. Suo, “A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen”, Catal. Lett. 97 (2004) 115–118.
[72] M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin, J. Cornejo, “Adsorption of anionic species on hydrotalcite-like compounds: Effect of interlayer anion and crystallinity”, Appl. Clay Sci. 18 (2001) 17–27.
[73] F. Kovanda, K. Jiratova, J. Rymes, D. Kolousek, “Characterization of activated Cu/Mg/Al/hydrotalcites and their catalytic in toluene combustion”, Appl. Clay Sci. 18 (2001) 71–80.
[74] D. Tichit, B. Coq, “Catalysis by hydrotalcites and related material”, CATTECH. 7 (2003) 206–217.
[75] G. Busca, U. Costantino, F. Marmottini, T. Montanari, P. Patrono, F. Pinzari, G. Ramis, “Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts”, Appl. Catal. A: Gen. 310 (2006) 70–78.
[76] F. Cavani, F. Trifiro, A. Vacari, “Hydrotalcite-type anionic clays: preparation, properties and applications”, Catal. Today 11 (1911) 173–301.
[77] W. T. Reichle, “Catalytic reactions by thermally activated anionic clay minerals”, J. Catal. 94 (1985) 547–577.
[78] A. Corma, V. Fornes, F. Rey, “Hydrotalcite as base catalyst: influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol”, J. Catal. 148 (1994) 205–212.
[79] A. L. McKenzie, C. T. Fishel, T. J. Davis, “Investigation of the surface structure and basic properties of calcined hydrotalcite”, J. Catal. 138 (1992) 547–561.
[80] N. Bejoy, “Hydrotalcite: The clay that cures”, Resonance, February (2001) 57–61.
[81] D. Tichit, M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini, E. Farronn,“Textural properties and catalytic activity of hydrotalcite”, J. Catal. 151 (1995) 50–59.
[82] C. P. Keikar, A. A. Schutz, “Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: synthesis and characterization”, Microporous Material 10 (1997) 163–172.
[83] A. Corma, V. Fornes, R. M. Martin-Aranda, F. Rey, “Determination of base properties of hydrotalcite: Condensation of benzaldehyde with ethyl acetoacetate”, J. Catal. 134 (1992) 58–65.
[84] N. A. Hodge, C. J. Kiely, R. Whyman, M. R. H. Siddiqui, G. J. Hutchings, Q. A. Pankhurst, F. E. Wagner, R. R. Rajaram, S. E. Golunski, “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation”, Catal. Today 72 (2002) 133–144.
[85] C. T. Chang, B. J. Liaw, C. T. Huang, Y. Z. Chen, “Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation”, Appl. Catal. A: Gen. 332 (2007) 216–224.
[86] E. D. Park, J. S. Lee, “Effect of pretreatment conditions on CO oxidation over supported Au catalysts”, J. Catal. 186 (1999) 1–11.
[87] G. C. Bond, D. T. Thompson, “Gold-catalysed oxidation of carbon monoxide”, Gold. Bulletin. 33(2) (2000) 41–51.
[88] J. Guzman, B. C. Gate, “Oxidation state of gold in MgO-supported complexes and clusters: Characterization by X-ray absorption spectroscopy and temperature-programmed oxidation and reduction”, J. Phys. Chem. B 107 (2003) 2242–2248.
[89] E. Gy. Szabó, A. Tompos, M. Hegedűs, Á. Szegedi, J. L. Margitfalvi, “The influence of cooling atmosphere after reduction on the catalytic properties of Au/Al2O3 and Au/MgO catalysts in CO oxidation”, Appl. Catal. A: Gen. 320 (2007) 114–121.
[90] D. Boyd, S. Golunski, G.R. Hearne, T. Magadzu, K. Mallick, M. C. Raphulu, A. Venugopal, M.S. Scurrell, “Reductive routes to stabilized nanogold and relation to catalysis by supported gold”, Appl. Catal. A: Gen 292 (2005) 76–81.
[91] Q. Fu, S. Kudriavtseva, H. Saltsburg, M. Flytzani-Stephanopoulos, “Gold-ceria catalysts for low-temperature water-gas shift reaction”, Chem. Eng. J. 93 (2003) 41–53.
[92] J. D. Grunwaldt, M. Maciejewski, O. S. Becker, P. Fabrizioli, A. Baiker, “Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation”, J. Catal. 186 (1999) 458–469.
[93] M. A. P. Dekkers, M. J. Lippits, B. E. Nienwenhuys, “Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions”, Catal. Today 54 (1999) 381–390.
[94] M. Haruta, M. Daté, “Advances in the catalysis of Au nanoparticles”, Appl. Catal. A: Gen. 222 (2001) 427–437.
[95] T. M. Salama, T. Shido, H. Minagawa, M. Ichikawa, “Characterization of Gold(I) in NaY Zeolite and acidity Generation”, J. Catal. 152 (1995) 322–330.
[96] M. A. Bollinger, M. A. Vannice, “A kinetic and DRIFTS study of low-temperature carbon monoxide over Au-TiO2 catalysts”, Appl. Catal. B: Environ 8 (1996) 417–443.
[97] D. Guillemot, V. Y. Borovkov, V. B. Kazansky, M. Polisset-Thfoin, J. Fraissard, “Surface characterization of Au/HY by 129Xe NMR and diffuse reflectance IR spectroscopy of adsorbed CO. Formation of electron-deficient gold particles inside HY cavities”, J. Chem. Soc. Faraday Trans. 93 (1997) 3587–3591.
[98] S. Minicò, S. Scirè, C. Crisafulli, A. M. Visco, S. Galvagno, “FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature”, Catal. Lett. 47 (1997) 273–281.
[99] M. A. P. Dekkers, M. J. Lippits, B. E. Nieuwenhuys, “CO adsorption and oxidation on Au/TiO2”, Catal. Lett. 56 (1998) 195–197.
[100] H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, Y. Iwasawa, “Active oxygen species and reaction mechanism for low-temperature CO oxidation on an Fe2O3-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated iron hydroxide”, Phys. Chem. 1 (1999) 2851–2860.
[101] H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, K. Asakura, Y. Iwasawa, “Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and As-precipitated titanium hydroxide”, J. Catal. 185 (1999) 252–264.
[102] J.-D. Grunwaldt, A. Baiker, “Gold/Titania interfaces and their role in carbon monoxide oxidation”, J. Phys. Chem. B 103 (1999) 1002–1012.
[103] A. K. Tripathi, V. S. Kamble, N. M. Gupta, “Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts”, J. Catal. 187 (1999) 332–342.
[104] M. Manzoli, A. Chiorino, F. Boccuzzi, “FTIR study of nanosized gold on ZrO2 and TiO2”, Surf. Sci. 532 (2003) 377–382.
[105] C. Lemire, R. Meyer, Sh. K. Shaikhutdinov, H.-J. Freund, “CO adsorption on oxide supported gold: from small clusters to monolayer islands and three-dimensional nanoparticles”, Surf. Sci. 552 (2004) 27–34.
[106] B. Schumacher, V. Plzak, M. Kinne, R. J. Behm, “Highly active Au/TiO2 catalysts for low-temperature CO oxidation: preparation, conditioning and stability”, Catal. Lett. 89 (2003) 109–114.
[107] D. C. Meier, D. W. Goodman, “The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2”, J. Am. Chem. Soc. 126 (2004) 1892–1899.
[108] C. Winkler, A. J. Carew, S. Haq, R. Raval, “Carbon Monoxide on γ-Alumina single crystal surfaces with gold nanoparticles”, Langmuir 19 (2003) 717–721.
[109] M. Valden, S. Pak, X. Lai, D. W. Goodman, “Structure sensitivity of CO oxidation over model Au/TiO2 catalysts”, Catal. Lett. 56 (1998) 7–10.
[110] H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, K. Asakura, Y. Iwasawa, “Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide”, J. Catal. 185 (1999) 252–264.
[111] A. K. Tripathi, V. S. Kamble, N. M. Gupta, “Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts” J. Catal. 187 (1999) 332–342.
[112] H. H. Kung, M. C. Kung, C. K. Costello, “Supported Au catalysts for low temperature CO oxidation”, J. Catal. 216 (2003) 425–432.
[113] L. M. Molina, B. Hammer, “Some recent theoretical advances in the understanding of the catalytic activity of Au”, Appl. Catal. A: Gen. 291 (2005) 21–31.
[114] S. H. OH, R. M. Sinkevitch, “Carbon monoxide removal from hydrogen-rich fuel cell feedstream by selective catalytic oxidation”, J. Catal. 142 (1993) 254–262.
[115] B. Rohland, V. Plzak, “The PEMFC-integrated CO oxidation- a novel method of simplifying the fuell cell plant”, J. Power Sources 84 (1999) 183–186.
[116] O. Korotkikh, R. Frrauto, “Selective catalytic oxidation of CO in H2: Fuel cell applications”, Catal. Today 62 (2000) 249–254.
[117] H. Kim, N. P. Subramanian, B. N. Popov, “Prepare of PEM fuel cell electrodes using pulse electro-deposition”, J. Power Sources 138 (2004) 14–24.
[118] M. M. Schubert, A. Venugopal, M. J. Kahlich, V. Plzak, R. J. Behm, “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3”, J. Catal. 222 (2004) 32–40.
[119] B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, R. J. Behm, “Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst” J. Catal. 224 (2004) 449–462.
[120] W. Deng, J. D. Jesus, H. Saltsburg, M. Flytzani-Stephanopoulos, “Low-content gold-ceria catalysts for the water-gas shift and preferential CO oxidation reactions”, Appl. Catal. A: Gen. 291 (2005) 126–135.
[121] S. S. Pansare, A. Sirijaruphan, J. G. Goodwin, “Au-catalyzed selective oxidation of CO: a steady-state isotopic transient kinetic study”, J. Catal. 234 (2005) 151–160.
[122] J. Jia, K. Haraki, J. N. Kondo, K. Domen, K. Tamaru, “Selective hydrogenation of acetylene over Au/Al2O3 Catalysts”, J. Phys. Chem. B 104 (2000) 11153–11156.
[123] M. Okumura, T. Akita, M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts”, Catal. Today 74 (2002) 265–269.
[124] J. E. Bailie, G. J. Hutchings, “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation”, Chem. Comm. (1999) 2151–2152.
[125] S. Schimpf, L. Martin, M. Christian, R. Uwe, B. Angelika, R. Jörg. H. Hofmeister, P. Claus, “Supported gold nanoparticles: In-depth catalyst characterization and application in hydrogenation and oxidation reactions”, Catal. Today 72 (2002) 63–78.
[126] C. Mohr, P. Claus, “Identification of active sites in gold-catalyzed hydrogenation of acrolein”, J. Am. Chem. Soci. 125 (2003) 1905–1911.
[127] J. Radnik, P. Claus, “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis”, Phys. Chem. Chem. Phys. 5 (2003) 172–177.
[128] C. Mohr, H. Hofmeister, P. Claus, “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein,” J. Catal. 213 (2003) 86–94.
[129] J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Rochester, N. V. Richardson, N. Hodge, Jian-Guo Zhang, A. Burrows, C. J. Kiel, G. J. Hutchings, “Hydrogenation of but-2-enal over supported Au/ZnO catalysts”, Phys. Chem. Chem. Phys. 3 (2001) 4113–4121.
[130] R. Zanella, C. Louis, S. Giorgio, R. Touroude, “Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism”, J. Catal. 223 (2004) 328–339.
[131] B. Campo, C. Petit, M. A. Volpe, “Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts”, J. Catal. 250 (2007) 1–8.
[132] E. Bus, R. Prins, J. A. van Bokhoven, “Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts”, Catal. Commun. 8 (2007) 1397–1402.
[133] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti, S. Galvagno, “A comparative study on the selective hydrogenation of α,β-unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts”, Catal. Today 122 (2007) 341–351.
[134] B. Campo, M. Volpe, S. Ivanova, R. Touroude, “Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts”, J. Catal. 242 (2006) 162–171.
[135] M. A. Vannice, B. Sen, “Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum”, J. Catal. 115 (1989) 65–78.
[136] A. Grioir-Fendler, D. Richard and P. Gallezot, “Chemioselectivity in the catalytic hydrogenateon of cinnamaldehyde: effect of metal particle morphology”, Catal. Lett. 5 (1990) 175–181.
[137] M. Englisch, A. Jentys and J. A. Lercher, “Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and TiO2”, J. Catal. 166 (1997) 25–35.
[138] M. Englisch, V. S. Ranade, J. A. Lercher, “Liquid phase hydrogenation of crotonaldehyde over Pt/SiO2 catalysts” Appl. Catal. A: Gen. 163 (1997) 111–122.
[139] M. Abid, V. Paul-Boncour, R. Touroude, “Pt/CeO2 catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states” Appl. Catal. A: Gen. 297 (2006) 48–59.
[140] F. Delbecq, P. Sautet, “Competitive C=C and C=O adsorption of α,β-unsaterated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: A theoretical approach”, J. Catal. 152 (1995) 217–236.
[141] A. Giroir-Fendler, D. Richard, and P. Gallezot, in Heterogeneous Catalysis and Fine chemicals, Studies in Surface science and Catalysis Vol.41, Elsevier, Amsterdam, (1988) 171.
[142] H. Yoshitake and Y. Iwasawa, “Active sites and reaction mechanisms for deuteration of acrolein on TiO2-, Y2O3-, ZrO2-, CeO2 and Na/SiO2- supported platinum catalysts”, J. Chem. Soc. Faraday Trans. 88 (3) (1992) 503–510.
[143] A. Sepulveda-Escribano, F. Coloma, F. Rodriguez-Reinoso, “Promoting Effect of Ceria on the Gas Phase Hydrogenation of Crotonaldehyde over Platinum Catalysts”, J. Catal. 178 (1998) 649–657.
[144] M. Consonni, D. Jokic, D. Yu. Murzin, R. Touroude, “High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde”, J. Catal. 188 (1999) 165–175.
[145] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol”, Catal. Lett. 33 (1987) 185–193.
[146] V. Satagopan and S. B. Chandalia, “Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: Part II”, J. Chem. Tech. Biotechnol. 60 (1994) 17–21.
[147] W. K. Amornpattana, J. M. Winterbottom, “Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde”, Catal. Today 66 (2001) 277–289.
[148] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D. Y. Murzin, I. Paseka, J. Heikkilä, E. Laine, P. Laukkanen, T. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Yzeolite catalysts for selective hydrogenation of cinnamaldehyde”, Appl. Catal. A: Gen. 251 (2003) 385–396.
[149] M. Shirai, T. Tanaka, M. Arai, “Selective hydrogenation of α,β-unsaturated aldehyde tounsaturated alcohol with supported platinum catalysts at high pressures of hydrogen”, J. Mole. Catal. A: Chem. 168 (2001) 99–103.
[150] M. A. Aramendía, V. Borau, C. Jiménez, J. M. Marinas, A. Porras, F. J. Urbano, “Selective liquid-phase hydrogenation of citral over supported palladium”, J. Catal. 172 (1997) 46–54.
[151] I. Kun, Gy. Szöllösi, M. Bartók, “Crotonaldehyde hydrogenation over clay-supported platinum catalysts”, J. Mole. Catal. A: Chem. 169 (2001) 235–246.
[152] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D. Yu. Murzin, “Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite”, J. Mole. Catal. A: Chem. 217 (2004) 145–154.
[153] J. Hájek, J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde”, Appl. Catal. A: Gen. 251 (2003) 385–396.
[154] S. Mukherjee, M. A. Vannice, “Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects”, J. Catal. 243 (2006) 108–130.
[155] D. V. Sokolskii, N. V. Anisimova, A. K. Zharmagambetova, S. G. Mukhamedzhanova, L. N. Edygenova, “Pt-Fe2O3 catalytic system for hydrogenation reactions”, React. Kinet. Catal. Lett. 33 (1987) 399–406.
[156] G. Cordier, Y. Colleuille, P. Fouilloux, in Catalyse par les Metaux (B. Imelik et al., eds.), Editions du CNRS, Paris, (1984) 349.
[157] G. Cordier, French Patent F 2,329,628 (1975), to Rhone-Poulene S. A.; Chem. Abstr. 87, 38862s (1997)
[158] H. Schaper, J. J. Berg-Slot, W. H. J. Stork, “Texture properties and catalytic of hydrotalcite”, Catal. A: Gen. 54 (1989) 79–87.
[159] M. Date, M. Haruta, “Moisture effect on CO oxidation over Au/TiO2 catalyst”, J. Catal. 201 (2001) 221–224.
[160] P. Maki-Arvela, J. Hajek, T. Salmi, D.Yu. Murzin, “Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts-a review”, Appl. Catal. A: Gen. 292 (2005) 1–49.
[161] R. A. Rajadhyaksha, S. L. Karwa, “Solvent effects in catalytic hydrogenation”, Chem. Eng. Sci. 41(7) (1986) 1765–1770.
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明