博碩士論文 92324014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.219.189.247
姓名 許玉瑩(Yu-Ying Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用矽氧烷化合物製備分子拓印高分子
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本研究利用溶膠-凝膠法以四甲氧基矽烷 (TMOS) 或與矽偶合劑為單體,製備出具有吸附及辨識咖啡因的分子拓印高分子材料,並探討不同製備條件即pH值、R值 (H2O/Si)、偶合劑的種類及添加量對分子拓印之影響。本研究所得分子拓印高分子材料可經由煅燒的方式將模版分子移除,而留下具有與拓印物質互補的辦識位置。
分子拓印高分子的性質可利用高效能液相層析儀 (HPLC) 測量咖啡因鍵結量及選擇性 (α,咖啡因鍵結量與類似物茶鹼鍵結量之比值),且可經由氮氣吸附孔隙儀 (ASAP) 得知,所製備之分子拓印高分子是否具多孔性質。
本研究結果顯示,單獨利用 TMOS 所製備之分子拓印高分子具有狹窄的孔徑分佈,並具有高比表面積 (434.5 m2/g),故可得到較高之咖啡鍵結量 (17 μmol/g)。而反應系統中藉由二官能基矽烷 (KBM-22) 或三官能基矽烷 (KBM-13) 的添加,可改變所得分子拓印高分子的比表面積與孔徑大小。隨著 KBM-13 添加比例的增加,可使咖啡因的鍵結量下降,但是提升分子拓印高分子的選擇性,最高可達7。
而利用煅燒升溫梯度的改變,所得分子拓印高分子之性質也有所不同。在改變煅燒升溫梯度下所得的咖啡因鍵結量,以利用 KBM-13所製備的提升效果較佳,可提升2 ~ 3倍,且選擇性也有明顯提升,最高可達48。
關鍵字(中) ★ 溶膠凝膠法
★ 分子拓印
關鍵字(英) ★ sol-gel
★ MIP
論文目次 目 錄
目錄…………………………………………………………………… I
圖索引………………………………………………………………… III
表索引………………………………………………………………… V
第一章 前言………………………………………………………….. 1
1-1 分子拓印原理………………………………………………… 2
1-2 共價鍵與非共價鍵型分子拓印……………………………… 5
1-3 溶膠-凝膠技術之簡介………………………………………... 9
1-4 溶膠-凝膠法之分子拓印材料………………………………... 17
1-5 咖啡因模版分子之介紹……………………………………… 23
1-6 研究目的……………………………………………………… 25
第二章 實驗………………………………………………………….. 27
2-1 實驗藥品……………………………………………………… 28
2-2 實驗儀器……………………………………………………… 30
2-3 分子拓印高分子材料之製備………………………………… 31
2-4 分子拓印高分子材料之物性測試…………………………… 34
第三章 結果與討論………………………………………………….. 36
3-1 四甲氧基矽烷製備分子拓印高分子………………………… 37
3-1-1 pH值對分子拓印高分子之影響………………………… 37
3-1-2 咖啡因添加量對分子拓印高分子之影響………………... 41
3-1-3 R值對分子拓印高分子之影響………………………… 43
3-2 四甲氧基矽烷與矽偶合劑製備分子拓印高分子…………… 46
3-2-1 R值對分子拓印高分子之影響……………………………. 46
3-2-1-1 高R值對分子拓印高分子之影響…………………….. 46
3-2-1-2 低R值對分子拓印高分子之影響…………………….. 53
3-2-2 pH值對分子拓印高分子之影響………………………… 55
3-2-3 二官能基矽烷含量對分子拓印高分子之影響…………... 61
3-2-4 三官能基矽烷含量對分子拓印高分子之影響…………... 67
3-2-5 不同煅燒溫度移除模版分子之探討……………………... 72
3-2-6 分子拓印高分子之結構鑑定……………………………... 78
3-2-7 咖啡因拓印之驗證………………………………………... 84
第四章 結論………………………………………………………….. 87
參考文獻……………………………………………………………… 89
圖索引
Figure 1-1 A way to make artificial locks for molecular keys………... 3
Figure 1-2 Schematic illustration of non-covalent molecular imprinting………………………………………………... 4
Figure 1-3 Covalent imprinting of mannopyranoside using itsp-vinylbenzenboronic acid as a functional monomer…….. 7
Figure 1-4 Non-covalent imprinting by theophylline………………… 8
Figure 1-5 The hydrolysis and condensation of silane……………….. 12
Figure 1-6 Sol-gel reaction process…………………………………... 13
Figure 1-7 Gel structure for acid and base catalyst reaction………….. 14
Figure 1-8 Polymerization behavior of aqueous silica……………….. 15
Figure 1-9 Scheme of relative reaction kinetics of alkoxysilanes versus pH…………………………………………………. 16
Figure 1-10 Preparation procedures used to create the imprinted silicas……………………………………………………. 18
Figure 1-11 Chemical structure of template molecules………………. 20
Figure 1-12 Scheme of formation of chiral cavity in a sol-gel matrix... 20
Figure 1-13 The structure of three dye molecules and schematic representation of the preparation of their imprinted polysiloxanes……………………………………………. 21
Figure 1-14 Scheme of a sol-gel method using TEOS and acetic anhydride………………………………………………… 22
Figure 1-15 A plausible mechanism of the formation of pore void suitable for the selective adsorption of steroid skeletons... 22
Figure 2-1 The structural formula of template and silanes…………. 29
Figure 2-2 Systhesis process of preparing MIP via sol gel process…... 32
Figure 2-3 Systhesis process of preparing MIP via sol gel process…... 33
Figure 3-1 Relationship between caffeine bound and pH value of MIP 40
Figure 3-2 Relationship between caffeine bound and R of MIP……… 45
Figure 3-3 Nitrogen adsorption-desorption isotherms and Pore sizedistributions of C-1, D-1………………………………….. 51
Figure 3-4 Relationship between selectivity and R of MIP…………... 52
Figure 3-5 Nitrogen adsorption-desorption isotherms and Pore size distributions of F-2………………………………………... 59
Figure 3-6 Nitrogen adsorption-desorption isotherms and Pore size distributions of F-2, F-4…………………………………... 60
Figure 3-7 Nitrogen adsorption-desorption isotherms and Pore size distributions of G-3……………………………………….. 65
Figure 3-8 Nitrogen adsorption-desorption isotherms and Pore size distributions of G-1, G-3…………………………………. 66
Figure 3-9 Nitrogen adsorption-desorption isotherms and Pore sizedistributions of H-1, H-3…………………………………. 71
Figure 3-10 TGA analysis of caffeine………………………………… 74
Figure 3-11 Different calcination temperature program……………… 75
Figure 3-12 TGA analysis of MIP prepared by different TMOS:KBM-13…………………………………………. 80
Figure 3-13 FTIR spectra of sample A-5 (A) before and (B) after calcination at 600℃……………………………………... 81
Figure 3-14 FTIR spectra of sample G-1 (A) before and (B) after calcination at 600℃……………………………………... 82
Figure 3-15 FTIR spectra of sample H-1 (A) before and (B) after calcination at 600℃……………………………………... 83
Figure 3-16 Selectivity of caffeine imprinted and non-imprinted……. 86
表索引
Table 1-1 Advantages and disadvantages of covalent and non-covalent imprinting……………………………………. 6
Table 1-2 Caffeine concentration among of the retail beverages…….. 24
Table 3-1 Preparation conditions and characteristics of MIP prepared by different pH value via sol-gel process………………….. 39
Table 3-2 Preparation conditions and characteristics of MIP prepared by different caffeine amounts via sol-gel process………….. 42
Table 3-3 Preparation conditions and characteristics of MIP prepared by different R(H2O:Si ratio) via sol-gel process................. 44
Table 3-4 Pore properties of MIP……………………………………... 49
Table 3-5 Preparation conditions and characteristics of MIP preparedby different R(H2O:Si ratio) via sol-gel process................. 50
Table 3-6 Preparation conditions and characteristics of MIP preparedby different R(H2O:Si ratio) via sol-gel process................. 54
Table 3-7 Preparation conditions and characteristics of MIP preparedby different pH via sol-gel process………………………… 57
Table 3-8 Pore properties of MIP prepared by different pH via sol-gelprocess……………………………………………………… 58
Table 3-9 Preparation conditions and characteristics of MIP preparedby different content of coupling agent via sol-gel process… 63
Table 3-10 Pore properties of MIP prepared by different content of coupling agent via sol-gel process………………………... 64
Table 3-11 Preparation conditions and characteristics of MIP preparedby different content of coupling agent via sol-gel process.. 69
Table 3-12 Pore properties of MIP prepared by different content of coupling agent via sol-gel process……............................... 70
Table 3-13 Preparation conditions and characteristics of MIP via sol-gel process and removed the template by differentcalcinations temperature………………………………….. 76
Table 3-14 Preparation conditions and characteristics of MIP viasol-gel process and removed the template by different calcinations temperature………………………………….. 77
Table 3-14 Preparation conditions and characteristics of MIPprepared by different content of coupling agent via sol-gel process…………………………………………………….. 85
參考文獻 參考文獻
[1] Olof Ramstrom, Molecular Imprinting Technology, Lund Sweden,
1996.
[2] L. Pauling, J. Am. Chem. Soc., 1940, 60, 2643.
[3] http://www.smi.tu-berlin.de/story/What.htm
[4] G. Wulff, R. Grobe-Einsler, A. Sarhan, Makromol. Chem., 1977, 178,
2817.
[5] K. J. Shea, T. K. Doughertly, J. Am. Chem. Soc., 1986, 108, 1091.
[6] R. Arshady, K. Mosbach, Macromol. Chem., 1981, 182, 687.
[7] G. Vlatakis, L. I. Andersson, R. Muller, K. Mosbach, Nature, 1993,
361, 645.
[8] A. M. Siouffi, J. Chromatogr., A 2003, 1000, 801.
[9] F. H. Dickey, Proc. Natl. Acad. Sci., 1949, 35, 227.
[10]A. H. Beckett, P. Anderson, Nature, 1957, 179, 1074.
[11]G. Wulff, Chem. Rev., 2002, 102, 1.
[12]B. Sellergren, Ed. Molecularly Imprinted Polymers, Elsevier: Amsterdam, 2001.
[13]M. Ming, Y. Chen, Katz, Langmuir, 2002, 18, 8566.
[14]Y.-C. Chen, C.-C. Tsai, Y.-D. Lee, J. Polym. Sci. Pol. Chem. A, 2004,
42, 1789.
[15]C.-Q. Liu, L. Fu, J. Economy, J. Mater. Chem.,2004, 14, 1187.
[16]Y.-A. Shchipunov, Y.-V. Burtseva, T.-N. Zvyaguntseva, J. Biochem. Bioph. Meth., 2004, 58, 25.
[17]M. Akram, M.-C. Stuart, Anal. Chim. Acta, 2004, 504, 243.
[18]Q.-F. Li, R.-H. He, J.-O. Jensen, N.-J. Bjerrum, Chem. Mater., 2003, 15, 4896.
[19]J.-H. Zhu, Y. Zhang, A. Basu, Z.-G. Lu, M. Paranthaman, D.-F. Lee, E.-A. Payzant, Surf. Coat. Tech., 2004, 177, 65.
[20]K. Morihara, M. Takiguchi, T. Shimada, Chem. Soc. Jpn., 1994, 67, 1078.
[21]G. Wulff, Chem. Int. Ed. Engl., 1995, 34, 1812.
[22]S.-W. Lee, I. Ichinose, T. Kunitake, Chem. Lett.,1998, 1193.
[23]M.-F. Lulka, J.-P. Chambers, E.-R. Valdes, R.-G. Thompson, J.-J. Valdes, Anal. Lett., 1997, 30, 2301.
[24]A. Katz, M.-E. Davis, Nature, 2000, 403, 286.
[25]S.-S. Iqbal, M.-F. Lulka, J.-P. Chambers, R.-G. Thompson, J.-J. Valdes, Sci. English, C2000, C7, 77.
[26]M.-A. Markowitz, P.-R. Kust, G. Deng, P.-E. Schoen, J.-S. Dordick, D.-S. Clark, B.-P. Gaber, Langmuir, 2000, 16, 1759.
[27]D.-Y. Sasaki, T.-M. Alam, Chem. Mater., 2000, 12, 1400.
[28]M.-F. Lulka, S.-S. Iqbal, J.-P. Chambers, E.-R. Valdes, R.-G. Thompson, M.-T. Goode, J.-J. Valdes, Mater. Sci. English, C2000, C11, 101
[29]S.-W. Lee, I. Ichinose, T. Kunitake, Langmuir, 1998, 14, 2857.
[30]D. Bersani, G. Antonioli, P. PaoloLottici, T. Lopez, J. Non-Cryst. Solids, 1998, 175.
[31]S. Wang, W. Wang, J. Zuo, Y. Qian, Mater. Chem. and Phys., 2001, 68, 246.
[32]G. Poelz, R. Riethmuller, Nucl. Instrum. Meth., 1982, 195, 491.
[33]S. Fireman-Shoresh, D. Avnir, S. Marx, Chem. Mater., 2003, 15, 3607.
[34]S.-L. Gong, Z.-J. Yu, L.-Z. Meng, L. Hu, Y.-B. He, J. Appl. Polym. Sci., 2004, 93, 637.
[35]M. Fujiwara, M. Nishiyama, I. Yamamura, S. Ohtsuki, R. Nomura, Anal. Chem., 2004, 76, 2374.
[36]吳佳怡,“分子拓印高分子之製備”, 國立中央大學化學工程與材料工程研究所碩士論文(2003)。
[37]鍾佳芸,“溶膠-凝膠法製備分子拓印高分子”, 國立中央大學化學工程與材料工程研究所碩士論文(2004)。
[38]P.B. Wagh, R. Begag, G.M. Pajonk, A. Venkasteswara Rao, D. Haranath, Mater. Cham. Phys., 1999, 57, 214.
[39]M. Jokinen, E. Gyorvary, J.-B. Rosenholm, Coll. Surf. A: Physicochem. Engng Asp., 1998, 141, 205.
[40]C.-I. Lin, A.-K. Joseph, C.-K. Chang, Y.-C. Wang, Y.-D. Lee, Anal. Chim. Acta, 2003, 481, 175.
[41]S. Ini, J.-L. Defreese, A. Katz, Mat. Res. Soc. Symp. Proc., 2002, 273, M2.3.1.
[42]H.-H. Yang, S.-Q. Zhang, W. Yang, X.-L. Chen, Z.-X. Zhuang, J.-G. Xu, X.-R. Wang, J. Am. Chem. Soc., 2004, 126, 4054.
[43]S.-R. Carter, S. Rimmer, Adv. Mater., 2002, 14, 667.
[44]M. Han, R. Kane, M. Goto, G. Belfort, Macromolecules, 2003, 36, 4472.
指導教授 陳暉(Hui Chen) 審核日期 2005-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明