博碩士論文 92324042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.39.176
姓名 王志豪(Chih-Hao Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 單股DNA於微奈米溝槽電極之基因晶片上固定化與雜交效率之最佳化
(Optimization of Immobilization and Hybridization Efficiency of Single-Strand DNA on Micro-Electrode Biochips)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要是利用表面改質與生物分子固定化來建立一個去氧核醣核酸分子檢測界面,並結合半導體製程及電路設計與量測,來研究一簡單新型的電子式基因晶片。整個研究的主題分為兩個部分,第一部分是探討去氧核醣核酸分子的固定化之驗證與最佳化,第二部分是探討以電性量測於去氧核醣核酸分子有雜交與無雜交的電性量測差異性之提升。藉由接觸角量測(contact angle measurement)、原子力顯微鏡(AFM)和表面化學元素分析儀(ESCA)來驗證去氧核醣核酸分子固定化,並利用HP4284量測不同條件下,有雜交與無雜交於微奈米溝槽內阻抗值之差異性。
在去氧核醣核酸分子固定化中,我們將二氧化矽表面經過適當的化學改質修飾後,固定去氧核醣核酸分子於表面上。實驗結果顯示,每一步化學改質與固定化反應均得驗證,並於pH為6.6,鹽濃度為0.3M的磷酸緩衝溶液中,固定化與雜交效率可達九成,且固定化與雜交反應時間僅需6小時與3小時即可達反應平衡。在電性測量測有無雜交於微奈米溝槽之差異性,實驗中選擇不同金奈米粒徑之標定、不同寬度之溝槽與量測頻率進行檢測。由電性量測訊號(阻抗值)可發現於頻率之影響較不明顯,但於金奈米粒徑為20nm與溝槽寬度為5
摘要(英) The research aimed at the optimizing the conditions for the immobilization of single-stranded DNA, hybridization of complementary ssDNA and detection of hybridization on the chip by electrical impedance. We used contact angle measurement, atomic force microscopy (AFM), electron spectroscopy for chemical analysis (ESCA) and UV-VIS to verify ssDNA immobilization and hybridization efficiency. Furthermore, gold nanoparticles were used to enhance the signal of the electrical impedance. In this study, we selected different frequency of the impedance measurement, different width of the gap and the sizes of the nanoparticles to reveal the optimum operation condition of the electrical gene chip. As a result, at the frequency of 100k Hz, particle size of 20nm and the gap width of 5mm, the chip has the difference of 16 times by electrical impedance in hybridization and non-hybridization.
關鍵字(中) ★ 金奈米
★ 去氧核醣核酸
★ 電性偵測
★ 基因晶片
關鍵字(英) ★ Gold nanoparticles
★ DNA
★ Electrical detection
★ Gene chip
論文目次 中文摘要................................ Ⅰ
Abstract................................ Ⅱ
圖目錄.................................. Ⅶ
表目錄.................................. Ⅹ
第一章 前言............................. 1
第二章 文獻回顧......................... 3
2.1. 生物晶片簡介....................... 3
2.1.1 去氧核醣核酸分子.................. 5
2.1.2 基因晶片檢測技術與發展............ 8
2.1.3 目前國內外基因晶片的產業現況...... 9
2.2. 表面改質與生物分子固定化........... 16
2.2.1. 分子自組單層膜................. 17
2.2.1.1. 硫醇類分子自組單層膜........... 19
2.2.1.2. 矽烷類或矽氧類分子自組單層膜... 21
2.2.2. 不同的生物分子之性質與固定化... 24
2.2.2.1. 去氧核醣核酸固定化............. 25
2.2.2.2. 蛋白質和抗體固定化............. 31
2.2.2.3. 生物膜的固定化................. 34
2.2.2.4. 去氧核醣核酸固定於蛋白質....... 36
2.3. 光學原理偵測生物分子交互作用....... 37
2.3.1. 金奈米粒子....................... 37
2.3.2. 表面電漿共振儀................... 41
2.3.3. Guided-Mode Resonance biosensor (GMR)43
2.4. 電性偵測原理....................... 45
第三章 實驗藥品與儀器設備............... 47
3.1 實驗藥品............................ 47
3.2 實驗儀器設備........................ 49
3.2.1表面化學分析電子能譜儀............. 49
3.3 實驗目的............................ 51
3.4 實驗方法............................ 52
3.4.1 實驗溶液配製...................... 52
3.4.1.1 緩衝液.......................... 52
3.4.2 實驗步驟.......................... 52
3.4.2.1 奈微米構槽基因晶片製備.......... 52
3.4.2.2 基材與晶片表面的清洗方法........ 54
3.4.2.2 去氧核醣核酸固定化與驗證........ 55
3.4.2.3 金奈米與不同官能基的吸附........ 56
3.4.2.4 固定化與雜交反應之最適化反應時間 57
3.4.2.5 電性量測實驗.................... 58
第四章 結果與討論....................... 59
4.1 Mfold模擬核酸序列之結果............. 59
4.2 去氧核醣核酸固定化之驗證............ 62
4.2.1 接觸角量測實驗.................... 62
4.2.2 原子力顯微鏡...................... 63
4.2.3 化學分析電子光譜儀................ 66
4.3.1 表面胺基之定量.................... 73
4.3.2 去氧核醣核酸固定量與雜交量之探討.. 75
4.3.3固定化及雜交時間之最適化........... 77
4.4 奈米粒子非專一性的吸附問題.......... 80
4.5 電性量測之探討...................... 85
4.5.1 背部電容值的影響................ 85
4.5.2 電性量測去氧核醣核酸雜交行為之結果 87
4.5.3 以不同頻率電性量測比較............ 88
4.5.4 以不同尺寸金奈米標定之比較........ 90
4.5.6 DNA雜交於不同寬度的微奈米溝槽之影響 95
4.6 Target DNA濃度對阻抗值之影響效應.... 97
第五章 結論與建議....................... 100
參考文獻................................ 103
圖目錄
圖2.1 (A)雙股DNA結構(B)不同種類去氧核醣核酸的鹼基 7
圖2.2 分子自組單層膜的組成........... 17
圖2.3 不同型種類的硫醇分子........... 20
圖2.4 硫醇分子吸附於金膜表面的機制... 20
圖2.5 不同種類的矽烷或矽氧化合物..... 21
圖2.6 Sagiv對於矽烷化合物水解機制的示意圖 22
圖2.7 Rye對於矽烷化合物水解機制的示意圖 23
圖2.8 硫醇修飾之去氧核醣核酸於金膜固定化 25
圖2.9 胺基修飾之去氧核醣核酸於金膜固定化 25
圖2.10 去氧核醣核酸分子於金膜上固定化. 26
圖2.11 三種具胺基官能基之矽氧化合物... 29
圖2.12 利用偶合劑將去氧核醣核酸分子固定化 29
圖2.13 二階段式的去氧核醣核酸分子固定化 31
圖2.14 抗體的結構圖................... 33
圖2.15 抗體之方位性的固定方法於二氧化矽 33
圖2.16 抗體之方位性的固定方法於金膜... 33
圖2.17 生物膜於金膜上之固定化......... 35
圖2.18 去氧核醣核酸分子於蛋白質上的固定化 36
圖2.19 金奈米奈子示意圖............... 39
圖2.20 以奈米金標定去氧核醣核酸雜交前後顏色的變化...................................... 40
圖2.21 SPR偵測示意圖.................. 42
圖2.22 GMR結構圖...................... 44
圖2.23. GMR的量測系統.................. 44
圖2.24. 並聯的電阻與電容結構............ 46
圖3.1. 表面化學分析電子能譜儀示意圖.... 50
圖3.2. 電子式基因晶片光罩圖............ 54
圖3.3. 表面改質與固定化流程圖.......... 56
圖4.1. 以Mfold預測核酸序列Target DNA之Hairpine構造及計算所得之.......................... 60
圖4.2. 以Mfold預測核酸序列Target DNA之Hairpine構造及計算所得之.......................... 61
圖4.3. 每一步改質晶片的表面形貌(A)經由酸洗後(B)經由矽氧化合物形成表面分子自組單層膜(C)接上SMPB Crosslinker(D)固定上Capture DNA (E)雜交Target DNA (F)雜交Probe DNA (G)有雜交以金奈米粒子標定(5mm×5mm) (H)無雜交以金奈米標定(5mm×5mm) (I)有雜交以金奈米粒子標定(1.2mm×1.2mm) (J)無雜交以金奈米標定(1.2mm×1.2mm)........................ 65
圖4.4. 二氧化矽基材上之化學分析(A)Si 2p3之分析 (B) P 2p3之分析 (C) N 1s之分析 (D)C 1s之分析 (E) O 2s之分析............................... 67
圖4.5. DETA於二氧化矽基材上形成分子自組單層膜之化學分析(A)Si 2p3之分析 (B) P 2p3之分析 (C) S 2p之分析 (D)C 1s之分析 (E) N 1s之分析 (F) O 2s之分析....................................... 68
圖4.6. SMPB於二氧化矽基材上形成分子自組單層膜改質之化學分析(A)Si 2p3之分析 (B) P 2p3之分析 (C) S 2p之分析 (D)C 1s之分析 (E) N 1s之分析 (F) O 2s之分析................................... 69
圖4.7. Capture DNA固定於於二氧化矽基材之化學分析(A)Si 2p3之分析 (B) P 2p3之分析 (C) S 2p之分析 (D)C 1s之分析 (E) N 1s之分析 (F) O 2s之分析 70
圖4.8. 比較表面改質與生物分子固定化四步驟的S 2p元素分析.................................. 71
圖4.9. 比較表面改質與生物分子固定化四步驟的P 2p3元素分析............................... 71
圖4.10. 比較表面改質與生物分子固定化四步驟的N 1s元素分析.................................. 72
圖4.11. Cibacron blue 檢量線............. 74
圖4.12. Cibacron blue結構式.............. 74
圖4.13. Capture DNA檢量線................ 76
圖4.14. Target DNA檢量線................. 76
圖4.15. Probe DNA 檢量線................. 77
圖4.16. 時間對上層溶液(Capture DNA)吸收值的關係圖........................................ 78
圖4.17. 時間對上層溶液(Target DNA)吸收值的關係圖........................................ 78
圖4.18. 時間對上層溶液(Probe DNA)吸收值的關係圖........................................ 79
圖4.19. 金奈米吸附情形於(A) 烷基官能基(B) 羥基官能基...................................... 82
圖4.20. 金奈米吸附情形(A)羧基(B)胺基..... 83
圖4.21. (A)Capture DNA 吸附金奈米情形(B)以鹽溶液沖提Capture DNA吸附之表面................. 84
圖4.22. (A)晶片示意圖(B)基因晶片之電路示意圖 86
圖4.23. 20nm金奈米標定頻率對有無阻抗值關係圖 89
圖4.24. 圖 2nm金奈米標定頻率對有無阻抗值關係圖......................................... 90
圖4.25. 以原子力顯微鏡觀察2nm金奈米於奈微米溝槽內分佈情形(A)無雜交(B)有雜交............... 92
圖4.26. 以原子力顯微鏡觀察20nm金奈米於分佈情形(A)有雜交(B)有雜交-溝槽內的分佈(C)無雜交(D)無雜交-溝槽內的分佈............................ 93
圖4.27. 100nm金奈米分佈情形(A)有雜交(B)無雜交......................................... 94
圖4.28. 2mm溝槽內金奈米粒子的分佈......... 96
圖4.29. 3mm溝槽內金奈米粒子的分佈......... 96
圖4.30. 5mm溝槽內金奈米粒子的分佈......... 97
圖4.31. 金奈米分佈情形(A)1pM(B)10pM(C)1nM. 99
圖4.32. Target DNA濃度對阻抗值關係圖...... 99
表目錄
表2.1. 微陣列晶片(microarray chip)及微處理晶片比較表..................................... 4
表2.2. 國內外主要基因晶片廠商與技術...... 10
表2.3. 不同方式生物分子固定化的比較...... 16
表2.4. 矽氧化合物於不同基材形成分子單層膜之活性測試....................................... 24
表2.5. 不同矽氧化合物官能基與去氧核醣核酸固定化比較....................................... 27
表2.6. 蛋白質固定化之比較................ 32
表2.7. 還原劑與還原之金奈米粒徑.......... 40
表3.1 實驗所使用去氧核醣核酸分子序列表... 48
表4.1 表面改質後接觸角之比較............ 63
表4.2 表面胺基固定量.................... 74
表4.3 雜交效率比較表.................... 76
表4.4 以金奈米20nm量測總阻抗值之差異性.. 86
表4.5 以電性量測未標定去氧核醣核酸於不同溝槽之差異性比較表............................... 87
表4.6 20nm金奈米標定頻率對有無阻抗值比較表 88
表4.7 2nm金奈米標定頻率對有無阻抗值比較表 89
表4.8 金奈米粒徑大小對有無雜交的影響比較表 91
表4.9 微奈米溝槽寬度對差異性的提升...... 95
參考文獻 1. Lockhart D. and E. Winzeler, “Gnomics, gene expression and DNA arrays,” Nature 2000, 405, 827-836
2. 莊慧明, “生物晶片產業調查與技術”, 2001, 141, 2-25.
3. Walt D. R., “Bead-based Fiber-Optic Arrays,” Science, 2000, 287, 451-452
4. Jain K.K., “Applications of biochip and microarray systems in pharmacogenomics,” Pharmacogenomics, 2000, 1, 289-307
5. Zubay G. L., W.W. Parson and D. E. Vance, ”Principles of biochemistry,” 美商麥格羅, 希爾國際股份有限公司, 2002
6. Duggan D. J., M. Bittner, Y. Chen, P. Meltzer and J.M. Trent, “Expression profiling using cDNA microarrays,” Nature Genetics Supplement, 1999, 21, 10-14
7. Gizeli E. and C.R. Lowe, “Biomolecular Sensors,” (Taylor & Francis, London, 2002)
8. Ulman A., “Formation and structure of self-assembled monolayers,” Chemistry Review, 1996, 96, 1533-1554
9. Tao Y. T., “Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum,” Journal of the American Chemical Society, 1993, 115, 4350-4358
10. Wang R. W. and Wunder S L. “Thermal stability of octadecylsilane monolayers on silica: curvature and free volume effects,” The Journal of Physical Chemistry B, 2001, 105,173-181.
11. Rong H. T., S. Frey and Y. J. Yang et al. “On the importance of the headgroup substrate bond in thiol monolayers: a study of biphenyl-based thiols on gold and silver,” Langmuir, 2001, 17, 1582-1593.
12. Alexander Y. F. and J. M. Thomas, “A new route to covalently attached monolayers: reaction of hydridosilanes with titanium and other metal surfaces,” Journal of the American Chemical Society, 1999, 121, 12184-12185.
13. 王明誠, “利用同步輻射X光光電子能譜研究電漿誘導生成官能基對生物單體固定之模式,” 博士論文, 中原大學醫學工程系, 2004
14. Bain C.D. and G. M. Whitesides, “Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group and solvent,” Journal of the American Chemical Society, 1989, 111, 7155-7164
15. Bain C.D., J. Evall, and G. M. Whiteside, “Formation of monolayers by the coadsorption of thiols on gold :variation in the length of the alkyl chain,” Journal of the American Chemical Society, 1989, 111, 7164-7175
16. Poirier G. E. and E. D. Plyant, “the self-assembly mechanism of alkanethiols on Au(111),” Science, 1996, 272, 1145-1148
17. Pallandre A., K. Glinel, A. M. Jonas and B. Nysten, “Binary nanopatterned surfaces prepared from silane monolayers,” Nano letters, 2004, 4, 2, 365-371
18. Sagiv' J., “Organized monolayers by adsorption, I. formation and structure of oleophobic mixed monolayers: on solid surfaces,” Journal of the American Chemical Society., 1980, 102, 92-98
19. Silberzan P., J. L. LBger, D. Ausserr and J. J. Benattarl, “Silanation of silica surfaces. a new method of constructing pure or mixed monolayers,” Langmuir, 1991, 7, 1647-1651
20. Rye R. R., G. C. Nelson and M. T. Dugger, “Mechanistic aspects of alkylchlorosilane coupling reactions,” Langmuir, 1997, 13, 2965-2972
21. Vallant T., H. Brunner, U. Mayer and H. Hoffmann, “Formation of self-assembled octadecylsiloxane monolayers on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy,” The Journal of Physical Chemistry B, 1998, 102, 7190-7197
22. Fixe F., A. Faber, D. Gonçalves, D.M.F. Prazeres, R. Cabeça, V. Chu, G. Ferreira and J.P. Conde, “Thin film micro arrays with immobilized DNA for hybridization analysis,“Material Research Society Symposium Proceedings, 2002, 723, O2.3.1- O2.3.6
23. Chien F.C., J.S. Liu, H.J. Su, L.A. Kao, C.F. Chiou, W.Y. Chen and S.J. Chen,” An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chemical Physics Letters, 2004, 397, 429–434
24. Zhao Y.D., D.W. Pang, S. Hu, Z.L. Wang, J.K. Cheng and H.P. Dai, “DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers,” Talanta, 1999, 49 751–756
25. Allemand J.F., D. Bensimon, L. Jullien, A. Bensimon and V. Croquette, “pH-dependent specific binding and combing of DNA,” Biophysics, 1997, 73, 2064–2070.
26. Cavic B.A., M.E. McGovern, R. Nisman and M. Thompson, “High surface density immobilization of oligonucleotide on silicon,” Analyst, 2001, 126 485–490
27. Zammatteo N., L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi and J. Remacle, “Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays,” Analytical Biochemistry, 2000, 280, 143–150
28. Lamture J.B., K.L. Beatie, B.E. Burke, H.D. Eggero, D.J. Ehrlich and R. Fowler, “Direct detection of nucleic acid hybridization on the surface of a charge couple device,” Nucleic Acids Research, 1994, 22, 2121–2125.
29. Lobert P.E., D. Bourgeois, R. Pampin, A. Akheyar, L.M. Hagelsieb, D. Flandre and J. Remacle, “Immobilization of DNA on CMOS compatible materials,” Sensors and Actuators B, 2003, 92, 90–97
30. Chrisey L.A., G.U. Lee and C.E. O’Ferrall, “Covalent attachment of synthetic DNA to self-assembled monolayer films,” Nucleic Acids Research, 1996, 24, 15, 3031–3039
31. Hermanson G.T., “Bioconjugate Techniques,” Academic press, 1996
32. Walsh M.K., X. Wang and B.C. Weimer, ”Optimizing the immobilization of single-stranded DNA onto glass beads,” Journal of Biochemical and Biophysical Methods, 2001, 47, 221–231
33. Va ková R., A. Gaudinová, H. Süssenbeková, P. Dobrev, M. Strnad, J. Holík and J. Lenfeld, “Comparison of oriented and random antibody immobilization in immunoaffinity chromatography of cytokinins,” Journal of Chromatography A, 1998, 811, 77-84
34. Bílková Z., J. Mazurová, J. Churá ek, D. Horák and J. Turková,” Oriented immobilization of chymotrypsin by use of suitable antibodies coupled to a nonporous solid support, “Journal of Chromatography A, 1999, 852, 141-149
35. Nisnevitch M., M. Kolog-Gulco, D. Trombka, B.S. Green and M.A. Firer, “Immobilization of antibodies onto glass wool,” Journal of Chromatography B, 2000, 738, 217–223
36. Liu Y.C., C.M. Wang and K.P. Hsiung, ” Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay,“ Analytical Biochemistry, 2001, 299, 130–135
37. Kusnezow W. and J.D. Hoheisel, “Solid supports for microarray immunoassays,” Journal of Molecular Recognition, 2003, 16, 165–176
38. Lahiri J., P. Kalal, A.G. Frutos, S. J. Jonas and R. Schaeffler, “Method for fabricating supported bilayer lipid membranes on gold,” Langmuir, 2000, 16, 7805-7810
39. Ji S.R., Y. Wu and S.F. Sui, “Cholesterol is an important factor affecting the membrane insertion of β-amyloid peptide (Aβ1–40), which may potentially inhibit the fibril formation,” The Journal of Biological Chemistry, 2002, 277, 8, 6273–6279.
40. 林佳珈, ”穿膜胜肽與生物細胞膜間的交互作用之探討(丨)-膽固醇的含量對蜂毒胜穿膜機制之影響,” 碩士論文, 國立中央大學化學工程與材料工程研究所, 2004
41. Ladd J., C. Boozer, Q. Yu, S. Chen, J. Homola and S. Jiang, “DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge,” Langmuir, 2004, 20, 8090-8095
42. Boozer C., J. Ladd, S. Chen, Q. Yu, J. Homola and S. Jiang, “DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors,” Analytical Chemistry, 2004, 76,6967-6972
43. Morhard F., J. Pipper, R. Dahint and M. Grunze, “Immobilization of antibodies in micropatterns for cell detection by optical diffraction,” Sensors and Actuators B, 2000.70, 232-242
44. Bier F.F., F.W. Scheller, “Label-free observation of DNA hybridisation and endonuclease activity on a waveguide surface using a grating coupler,” Biosensors and Bioelectronics, 1996, 11, 669-674
45. Jin G., P. Tengvall, I. Lundstrom and H. Arwin, “A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions,” Analytical Biochemistry, 1995, 232, 69-72
46. Huber W., R. Barner, C. Fattinger, J. Hubscher, H. Koller, F. Muller, D Schlatter and W. Lukosz, “Direct optical immunosensing (sensitivity and selectivity),” Sensors and Actuators B, 1992, 6, 122-126
47. Brecht A. and G. Gauglitz, “Optical probes and transducers,“ Biosensors and Bioelectronics, 1995, 10, 923-936
48. 葉瑞銘和劉時州, ” 奈米金粒子之製備與應用,” 化工資訊與商情, 2003, 21, 48-54
49. Chen W., W. Cai, L. Zhang, G. Wang and L. Zhang, “Sonochemical processes and formation of gold nanoparticles within Pores of mesoporous Silica,” Journal of Colloid and Interface Science, 2001, 238, 291–295
50. Mafune´ F., J. Kohno, Y. Takeda, and T. Kondow “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” The Journal of Physical Chemistry. B, 2000, 104, 9111-9117
51. Hayat M.A., “Collodial gold: principle, methods, and application,” Academic, San DIEGO, 1989
52. Brust M., M. Walker, D. Bethell, D.J. Schiffrin and R.J. Whyman, “Thiol-derivatized gold nanoparticles in a twophase liquid-liquid system,“ Journal of the Chemical Society Communication, 1994, 801-802
53. Capek I., “Advances in colloid and interface,“ Science, 2004, 110, 49-74
54. Mirkin C.A., R.L. Lestinger, R.C. Mucic and J.J. Storhoff, “DNA-based method for rotationally assembling nanoparticles into macroscopic material,” Nature, 1996, 382-607-609
55. Mirkin C.A., “Invited contribution from recipient of ACS award in pure chemistry,” Inorganic Chemistry, 2000, 39, 2258-2272
56. Cobbe S., S. Connolly, D. Ryan, L. Nagle, R. Eritja and D. Fitzmaurice, “DNA-controlled assembly of protein-modified gold nanocrystals,” The Journal of Physical Chemistry B, 2003, 107, 470-477
57. Homola J., S.S. Yee and G. Gauglitz,” Surface plasmon resonance sensors: review,” Sensors and Actuators B, 1999, 54, 3–15
58. Morton T.A. and D.G. Myszka, "Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors," Methods in Enzymology, 1998, 295, 268-294
59. Zeder L.G., A.R. Neurath and M.H. Van Regenmortel, "Kinetics of interaction between 3-hydroxyphthaloyl-beta-lactoglobulin and CD4 molecules," Biologicals, 1999, 27, 29-34
60. Myszka D.G. and R.L. Rich, "Implement surface plasmon resonance biosensors in drug discovery," Program in Polymer Science and Technology, 2000, 3, 310-317
61. Gotoh M., Y. Hasegawa, Y. Shinohara, M. Shmizu and M. Tosu, "A new approach to determine the effect of mismatches on kinetic parameters in DNA hybridization using an optical biosensor" DNA Research, 1995, 2, 285-293
62. Mozsolits H and M.I. Aguilar, “Surface plasmon resonance spectroscopy: An Emerging Tool for the Study of Peptide–Membrane Interactions,” Biopolymers (Peptide Science), 2002, 66, 3–18
63. Ya N., L. Wang, Z. Wang, and C. Lai, "Beam selector dependent on incident angle by guided-mode resonant subwavelength grating," Optical Engineering, 2002, 41, 2966–2969
64. Brian C., P. Li, B. Lin and J. Pepper, ” Colorimetric resonance reflection as a direct biochemical assay technique,” Sensors and Actuators B, 2002, 81, 316-328
65. Lin B., J. Qiu, J. Gerstenmeier, P. Li, H. Pien, ” A label-free optical technique for detecting small molecule interactions,” Biosensors and Bioelectronics, 2002, 17, 827-834
66. Lee J.S., Y.K. Choi, M. Pio, J. Seo and L.P. Lee, “Nanogap capacitors for label free DNA analysis,” Materials Research Society, 2002, 729, U4.10
67. Park S.J., T.A. Taton and C.A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science, 2002, 1503-1506
68. 蔡宜樺, “應用奈米電極檢測支單一核酸多型性生物晶片,” 碩士論文,國立台灣大學機械工程學研究所, 2003
69. 許士忠, “電子式基因序列偵測晶片可行性之研究,” 碩士論文, 國立中央大學電機工程研究所, 2003
70. 梁柏榮, “電子式基因序列偵測晶片之原型,” 碩士論文, 國立中央大學電機工程研究所, 2003
71. Holbrook J.A., M.W. Capp, R.M. Saecker and M.T. Record, “Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex:interpretation in terms of coupled processes of formation and association of single-stranded helices,” Biochemistry, 1999, 38, 8409-8422
72. Petrovykh D.Y., H. Kimura-Suda, M.J. Tarlov, and L.J. Whitman, “Quantitative characterization of DNA films by X-ray photoelectron spectroscopy,” Langmuir, 2004, 20, 429-440
73. 呂明原, ”固定寡核甘酸所需基材之製備,” 碩士論文,中原大學化學工程所, 2004
74. Wasserman S.R., Y.T. Tao, J.M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir, 1989, 5, 1074-1087
75. Demers L.M., M. Ostblom, H. Zhang, N.H.J. Liedberg and C.A. Mirkin, “Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold,” Journal of the American Chemical Society, 2002, 124, 11248-11249
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2005-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明