博碩士論文 93324045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.139.80.42
姓名 賴思嘉(Szu-Chia Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鋅促進劑對氧化鋁擔載奈米金觸媒 表面特性與催化活性之影響研究
(Hydrogen production by partial oxidation of methanol over ZnO-promoted Au/Al2O3 catalysts)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以氧化鋁為擔體,利用沈澱固著法製備成奈米氧化鋁擔載金觸媒(Au/Al2O3 觸媒),以及添加不同比例ZnO促進劑的擔載金觸媒(Au/ZnO/Al2O3觸媒),進行甲醇部分氧化反應(CH3OH + 1/2O2 → 2H2 + CO2)製備氫氣做為活性測試。利用感應耦合電漿原子發射光譜儀(ICP-AES)、熱重分析儀(TGA)、X射線繞射儀(XRD)、穿透式電子顯微鏡(TEM)、掃瞄式電子顯微鏡(SEM)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定。從TEM的分析結果發現,以沈澱固著法製備出的Au/Al2O3和Au/ZnO/Al2O3觸媒,金晶粒均呈圓球型,直接吸附在擔體上。Au/ZnO/Al2O3觸媒中金顆粒的大小會隨著煅燒溫度而改變,未煅燒時金顆粒為3.0 nm,在873 K下煅燒後,Au顆粒則為8.8 nm,與Au/Al2O3 觸媒金晶粒相比,有明顯防止燒結功能。經過活性測試後發現,在pH=8製備的觸媒,煅燒573 K的Au/ZnO/Al2O3觸媒有最佳的甲醇轉化率和氫氣選擇率。另外促進劑ZnO的添加比例也是影響反應的一個因素,以Au/Zn 原子比1/5的Au/ZnO/Al2O3觸媒有最高氫氣選擇率,和最低一氧化碳選擇率。隨著反應溫度的增加,甲醇轉化率和氫氣選擇率亦隨之增加。最後和文獻上的銅、鈀以及鉑觸媒催化結果做比較,Au/ZnO/Al2O3觸媒的催化活性較佳,CO的產率也較低,但是由於副產物HCOOCH3與CH4的生成,會降低甲醇部分氧化反應的氫氣選擇率,因此未來仍須進行觸媒的再改質,期望能提升氫氣選擇率,降低反應副產物的生成,以應用於燃料電池電動車上。
摘要(英) Au/Al2O3 and ZnO-promoted Au/ZnO/Al2O3 gold catalysts, prepared by the method of deposition-precipitation, were tested by partial oxidation of methanol (CH3OH + 1/2O2 → 2H2 + CO2) to produce hydrogen. The catalysts were characterized by ICP-AES, TGA, XRD, and TEM analyses. For XRD analyses, both gold catalysts had patterns similar to the aluminum support. No metallic Au peaks were observed; this is probably due to the small particle size of the gold loading. After calcination at 673 and 873 K, the appearance of Au(2 0 0) reflections becomes more visible. The appearance of gold reflection at higher temperature of calcination is interpreted as due to a higher average gold particle size. From TEM result, the gold species in Au/Al2O3 catalyst display spherical shapes and are distributed uniformly over the aluminum support. The mean particle size of gold increases from 3.0 to 8.8 nm, when the calcination temperature increases from 373 to 873 K. TEM observations show that the Au/ZnO/Al2O3 catalysts exhibit hemispherical gold particles, which are strongly attached to metal oxide support at their flat planes. The Au/ZnO/Al2O3 catalyst before POM shows that gold particles are regularly distributed on the whole support and after POM reaction at 548 K for 180 min shows that small gold particles initially present on catalysts are disappeared. The catalytic activity relates to the gold particle size, with smaller particles produce higher hydrogen selectivity. The catalyst precipitated at pH 8 and calcined at 573K shows highest activity for hydrogen generation. Besides, the promoter amount was a factor influenced the reaction. It also shows that the Au/Zn molar ratio of 1/5 has the highest methanol conversion and hydrogen selectivity. When the reaction temperature up to 548 K, the hydrogen selectivity increases with the increase of temperature, and that the selectivity of carbon monoxide decreases.
關鍵字(中) ★ 甲醇部分氧化反應
★ 氧化鋅促進劑
★ 氧化鋁擔載奈米金觸媒
★ 沈澱固著法
關鍵字(英) ★ DP method
★ Au/ZnO/Al2O3 catalysts
★ POM reaction
論文目次 中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅴ
圖索引…………………………………………………………………Ⅸ
表索引………………………………………………………………ⅩⅢ
第一章?
參考文獻 Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R. M., Fierro, J. L. G., “Preduction of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, Journal of Catalysis, 219, 389 (2003).
Agrell, J., Germani, G., Järås, S. G., Boutonnet, M., “ Production of hydrogen by partial oxidation of methanolover ZnO supported palladium catalysts preparedby microemulsion technique”, Applied Catalysis A: General , 242 ,233 (2003).
Agrell, J., Hasselbo, K., Jansson, K., Jaras, S. G., Boutonnet, M., “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 211, 239 (2001).
Alejo, L., Lago, R., Pena, M. A. and Fierro, J. L. G., “Partial oxidation of methanol to produce hydrogen over Cu-Zn based catalysts”, Applied Catalysis A: General, 162, 281 (1997).
Andreeva, D., Idakiev, V., Tabakova, T, Andreev, A., Giovanoli, R., “Low-temperature water-gas shift reaction over Au/α-Fe2O3”, Journal of Catalysis, 158, 354 (1996).
Andreev, D., Tabakova, T., Idakiev, V., Christov, P., Giovanoli, R., “Au/Alpha-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation”, Applied Catalysis A:General, 169, 9 (1998).
Andreeva, D., Tabakova, T., Ilieva, L., Naydenov, A., Mehanjiev, D., Abrashev, M.V., “Nanosize gold catalysts promotrd by vanadium oxide supported on titania and zirconia for complete benzene oxidation”, Applied Catalysis A: General, 209, 291 (2001).
Arrii, S., Morfin, F., Renouprez, J., Rousset, J.L., “Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution”, Journal of the American Chemical Society, 126, 1199 (2004).
Bamwenda, G. R., Tsubota, S., Nakamura, T. and Haruta, M., “The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation”, Catalysis Letters, 44, 83 (1997).
Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Lchikawa, S., Haruta, M., “Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcinations temperature on the CO oxidation”, Journal of Catalysis, 202, 256 (2001).
Boccuzzi, F., Chlorino, A., Tsubota, S., Haruta, M., “FTIR Study of Carbon Monoxide Oxidation and Scrambling at Room Temperature over Gold Supported on ZnO and TiO2”, Journal of Physical Chemistry, 100, 3625 (1996).
Bond, G. C., Gold Bull, 5, 11 (1972).
Claus, P., Bruckner, A., Mohr, C., Hofmeister, H., “Supported gold nanoparticles from quantum dot to mesoscopic size
scale: effect of electronic and structural properties on catalytic
hydrogenation of conjugated functional groups”, Journal of the American Chemical Society, 122, 11430 (2000).
Costello, C. K., Kung, M. C., Oh, H. -S., Wang, Y, Kung, H. H., “Nature of the active site for CO oxidation on highly active Au/Al2O3”, Applied Catalysis A: General, 232, 159 (2002).
Cubeiro, M. L. and Fierro, J. L. G. “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Applied Catalysis A: General, 168, 307 (1998).
Date, D., Lchihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catalysis Today, 72, 89 (2002).
Dietz, W. A., “Response factors for gas chromatographic analyses”, Journal of GC February, 68 (1967).
Funasaki, N., Henmi, A., Ito, S., Asano, Y., Yamashita, S., Kobayashi, T., Haruta, M., Sensors and actuators B, 13-14, 536 (1993).
Galvagno, S. and Parravano, G., Journal of Catalysis, 55, 178 (1978).
Gardner, S. D., Hoflund, G. B., Upchurch, B. T., Schryer, D. R., Kielen, E. J. and Schryer, J., “Comparison of the performance-characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation”, Journal of Catalysis, 129, Iss 1, 114 (1991).
Gluhoi, A. C., Dekkers, M. A. P., Nieuwenhuys, B. E., “ Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides”, Journal of Catalysis, 219, 197 (2003).
Goodman, D. W., Valden, M., “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties”, Science, 281, 1647 (1998).
Greenwood, N. N., Earnshaw, A., Chemistry of the Elements, Pergamon, Oxford, (1984).
Grisel, R. J. H., Kooyman, P. J., Nieuwenhuys, B. E., “Influence of the preparation of Au/Al2O3 on CH4 oxidation activity”, Journal of Catalysis, 191, 430 (2000).
Grisel, R. J. H., Nieuwenhuys, B. E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catalysis Today, 64, 69 (2001).
Grisel, R. J. H., Slyconish, J. J., Nieuwenhuys, B. E., “Oxidation reactions over multi-component catalysts: low-temperature CO oxidation and the total oxidation of CH4”, Topics in Catalysis. 16/17, 425 (2001).
Grisel, R. J. H., Weststrate, Goossens, Craje, Vanderkraan, and Nieuwenhuys, “Oxidation of CO over Au/MOx/Al2O3 multicomponent catalysts in a hydrogen-Rich environment”, Cataysis Today, 72, 123 (2002).
Grunwaldt, J. D., Baiker, A., “Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation”, Journal of Physical Chemistry B, 103, 1002 (1999).
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catalysis Today, 36, 153 (1997).
Haruta ,M., Daté , M., ” Advances in the catalysis of Au nanoparticles”, Applied Catalysis A: General, 222, 427 (2001).
Haruta, M., Hyomen, Surface, 28, 333 (1990).
Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Catalysis Letters, 405 (1987).
Haruta, M., Tsubota, S., Kobayashi, T., Kagetama, H., Genet, M. J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, Journal of Catalysis, 144, 175 (1993).
Haruta, M., Ueda, A., Tsubota, S., Torres Sanchez, R. M., “Low temperature catalytic combustion of methanol and its decomposed of methanol and its decomposed derivatives over supported gold catalysts”, Catalysis Today, 29, 443 (1996).
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., Journal of Catalysis, 115, 301 (1989).
Hcyashi, T. and Haruta, M. “Effect of a loading on selectivity in the reaction of propylene on Au/TiO2 catalyst”, Shokubai, 37, 75 (1995).
Hodge, N. A., Kiely, C. J., Whyman, R., Siddiqui, M. R. H., Hutchings, G. J., Pankhurst, Q. A., Wangner, F. E., Rajaram, R. R., Golunski, S. E., “Microstructural comparison of calacined and uncalined gold/iron-oxide catalysts for low-temperature CO oxidation”, Catalysis Today, 72, 133 (2002).
Huang, T. J. and Chren, S. L. “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”, Applied Catalysis A: General, 40, 43 (1988).
Hutchings, G. J., Gold Bull, 29, 123 (1996).
Klabunde, K. J., Nanoscale materials in chemistry, John Wiley &Sons Inc. New York, Chapter 2, (2001).
Kumar, R., Ahmed, S., Krumplet, M., Myles, K., M., Agron National Laboratory Report, ANL-92/31, Argone, IL, USA, (1992).
Lee, S. -J., Gavriilidis, A., Pankhurst, Q. A., Kyek, A., Wagner, F. E., Wong, P. C. L., Yeung, K. L., “Effect of drying conditions of Au-Mn co-precipitates for low-temperature CO oxidation”, Journal of Catalysis, 200, 298 (2001).
Lin, S. P, Bollinger, M., Vannice, M. A., Catalysts Letters, 17, 245 (1993).
Luengnaruemitchau, A., Osuwan, S., Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catalysis Communications, 4, 215 (2003).
Macken, J. A., Yagnik, S. K., Samis, M. A., IEEEJ. Quantum Electrics, 25, 1695 (1991).
Mavrikakis, M., Stoltze, P., Norskov, J. K., “Making gold less noble”, Catalysis Letters, 64, Iss 2-4, 101 (2000).
Merck & Co., The Merck Index, (1996).
Minico, S., Scire, S., Crisafulli, C., Maggiore, R. and Galvagmo, S. “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts”, Applied Catalysis B: Environmental, 28, 245 (2000).
Navarro, R. M., Pena, M. A., Fierro, J. L. G, “Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: Influence of the initial state of the catalyst on the start-up behavior of the reformer”, Journal of Catalysis, 212, 112 (2002).
Nkosi, B., Coville, N. J.,Hutchings, G. J., Adams, M. D., Friedl, J., Wagner, F. E., “Hydrochlorination of acetylene using gold catalysts: a study of catalyst deactivation”, Journal of Catalysis, 128, 366 (1991).
Park, E. D., Lee, J. S., “Effects of pretreatment conditions on CO oxidation over supported Au catalysts”, Journal of Catalysis, 186, 1 (1999).
Park, S. H., Tzou, M. S., and Sachtler, M. H., Applied Catalysis A: General, 24, 85 (1986).
Somorjai, G. A., Introduction to Surface Chemistry and Catalysis,
Wiley–Interscience, New York, (1994).
Traxel, B. E., Hohn, K. L, “Partial oxidation of methanol at millisecond contact times”, Applied Catalysis A: General, 244, 129 (2003).
Wagner, F. E., Galvagno, S., Milone, C., Visco, A. M., “Mössbauer characterization of gold/iron oxide cataltsts”, Journal of the Chemical Society. Faraday Transactions, 93, 3403 (1997).
Wang, D., Hao, Z., Cheng, D., Shi, X., Hu, C., “Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/A2O3 catalysts”, Journal Molecular Catalysis A: Chemical, 200, 229 (2003).
Wang, Z., Xi, J., Wang, W. and Lu, G. “Selective production of hydrogen by partial oxidation of methanol over Cu-/Cr catalysts”, Journal of Molecular Catalysis A: Chemical, 191, 123 (2003).
Wolf , A., Schüth. F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Applied Catalysis A: General , 226, 1 (2002).
Yeh, C. T. and Chen, Y. J., “Deposition of higher dispersed gold on alumina support”, Journal of Catalysis, 200, 59 (2001).
Zanella, R., Giorgio, S., Shin, C.H., Henry, C.R., Louis, C., “Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea”, Journal of Catalysis, 222, 357 (2004).
陳永杰,洪華聖,葉君棣, “支撐性金觸媒在甲醇部分氧化反應上的應用”,第十九屆觸媒與反應工程研討會 (2001).
余心印, “氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究”,國立中央大學化學與材料工程研究所碩士論文(2005)。
黃鎮江, “燃料電池”,全華科技圖書股份有限公司(2003)。
廖建達, “氧化鋁擔載奈米金觸媒之製備與應用研究”,國立中央大學化學與材料工程研究所碩士論文(2004)。
廖麗美, “氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究”,國立中央大學化學與材料工程研究所碩士論文(2005)。
指導教授 張奉文(Feg-Wen Chang) 審核日期 2006-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明