博碩士論文 93344005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:13.59.122.162
姓名 黃仕穎(Shi-Ing Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以氟素高分子與二氧化矽製備疏水薄膜材料之研究
(Study on the hydrophobic films made of fluoropolymer and silica)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用四種方法實施疏水薄膜材料之製備研究,藉由製造表面粗糙度與表面疏水官能基之披覆以達到疏水的特性。首先以氟素高分子與二氧化矽的前驅物在溶劑中進行溶凝膠反應。藉著氟素高分子提供疏水官能基,並利用溶凝膠法在高分子中成長形成二氧化矽粒子以製造表面粗糙度。其中所使用的氟素高分子聚二氟乙烯(PVDF)可溶於溶劑中,因此可適用於溶凝膠反應;然而,因水與高分子間之不互溶性,水量無法加入太多,太多的水會造成氟素高分子在溶劑中相分離。此外前驅物太多會使塗層材料變脆,甚至無法成膜。以此方法所製得到之塗層表面粗糙度較小,因此接觸角維持在90度左右。其中,以溶凝膠法所形成之二氧化矽應具有相當多親水性之氫氧基,可是以FTIR觀察並未發現氫氧基,可能是二氧化矽粒子受到PVDF之披覆且受限於TEOS之添加量較少,使得薄膜中所形成的二氧化矽粒子較少,因此所得到的薄膜材料依然具有疏水特性。
為了增加二氧化矽在氟素高分子的比例,以增加表面粗糙度,改採用第二種方法,以二氧化矽粉末與氟素高分子混合。在此章研究中,分別使用兩種氟素高分子PVDF與四氟乙烯-六氟丙烯共聚物(FEP)和兩種尺寸(5微米與310奈米)之二氧化矽粒子混合,並將其塗佈於玻璃基材表面。量測水滴對塗層材料表面的接觸角,並以SEM觀察塗層的表面型態。實驗結果發現以奈米尺寸的二氧化矽粉體添加於PVDF中,利用奈米二氧化矽所堆積形成的表面粗糙度,可提升表面接觸角至110度左右;以奈米尺寸的二氧化矽粉體添加於FEP高分子中,利用奈米二氧化矽堆積形成的表面粗糙度,搭配FEP全氟之疏水特性,甚至可得到更高的表面接觸角134度。
本研究中所採用的第三種製備疏水薄膜的方法,即在PVDF之中分別加入PPG或PEG製膜,並以溶劑將PPG或PEG移除,在PVDF薄膜表面會留下孔洞,藉此增加PVDF的表面粗糙度,以提升PVDF的表面接觸角。實驗結果顯示PVDF表面接觸角會隨PPG與PEG的加入有所增加。但是當PEG/PVDF或PPG/PVDF?0.5時,會有相反轉現象。當PPG/PVDF=0.4時,PVDF有最大表面接觸角度123度;然而當PPG/PVDF?0.5產生相反轉時,因表面粗糙度下降,接觸角會大幅下降。在PEG/PVDF的系統中,相反轉時,因有藕斷絲連之結構可提供表面粗糙度,所以接觸角會繼續上升;而在PPG/PVDF的系統中,可能因為丙酮在室溫下會些微融解PVDF,破壞了相反轉形成之藕斷絲連結構,所以接觸角會大幅下降。
本研究所使用的第四種方法即採用兩步驟溶凝膠法製作具有粗糙表面之塗層,再以三甲基氯烷(TMCS)將表面改質。利用兩步驟的溶凝膠法控制生成的二氧化矽粒子之尺寸,藉著不同尺寸的二氧化矽粒子的聚集,可形成不同的表面粗糙度,並得到不同的接觸角結果。在兩步驟的溶凝膠製程,當第一步驟中的水量增加時,因為在酸性環境下,水參與水解反應產生較多的silanol,ts與tg會隨之下降。當較多的酸加入反應時,會加快反應速率,而生成的粒子透過聚集與縮合可形成粗糙的表面,使接觸角增大。當氨水的添加量增加時,反應速率會增加,使ts與tg下降。當TEOS:Ra:R:HCl為 1:0.5:3.5:3.36x10-4,且NH4OH/HCl大於5.6時,溶液中會有大的粒子生成,這些大粒子經過聚集與縮合反應可製成粗糙表面,而表面接觸角可大於140 o。當TEOS:Ra:HCl為 1:0.5:3.36x10-4,R值控制在2.9以上,塗層材料的表面接觸角幾乎都大於140o。在本研究中,實驗所得到最好的結果可達到超疏水,表面接觸角為150度。
摘要(英) In this study, four methods were applied to make hydrophobic films. First, the coating materials were made by the combination of PVDF and sol-gel processes. Since PVDF could be dissolved in the solvent, it was the better choice for the hydrophobic hybrid materials, which were made by the combination of fluoropolymer and sol-gel process. However, in this process, only a little water could be added. Too much water would result in phase separation. And too much precursor added would result in brittleness of coating materials. For there was not a lot of TEOS added, the roughness of the coating materials could not be increased, therefore the contact angles of the surface of the materials did not increase. However, the hydrophilic silica did not decrease the contact angle of the films, due to less silica formed in the films and the surface of silica covered by PVDF.
Besides, to increase the content of silica in PVDF, silica powder was mixed with the fluropolymer. The surface roughness was formed by aggregation of silica to promote the hydrophobia of fluoropolymer. Since FEP had better hydrophobia, it was a better choice than PVDF. The contact angles of the surface of the SiO2/FEP film can be 134o. But the content of silica was limited. The size of silica was submicron. Too much silica would make the blending difficult.
The third method is to add PPG or PEG into PVDF solutions to make membranes. After the PPG or PEG were removed from the membranes, there were holes left on the membranes. It increased the roughness of the surfaces of the membranes. The contact angles of the membranes could be 123 degree. When PEG/PVDF or PPG/PVDF?0.5, there was phase inversion occurred. As PEG/PVDF ? 0.5, the contact angles of the films still increased. There was web structure left in the films to provide roughness. When PPG/PVDF?0.5, the contact angles went down, due to the web being destroyed by acetone.
In this study, the last method, the two-step sol–gel process was used to prepare hydrophobic coating films on the glass substrates. The first step was to add hydrogen chloride into TEOS (tetraethoxysilane) solution, and then
the second step was to add ammonia into the above reacted solution. We adopted different amount of hydrogen chloride and ammonia to control the sol–gel reaction and observed the change of the viscosity, gelatin period of the solution and contact angles of the coating films. By this method, we created a surface with roughness and then the hydroxyl groups were terminated by adding trimethylchlorosilane (TMCS) to produce a hydrophobic coating layer. The amount of the acid, base and water added in the solution influenced the reaction rate and resulted in the aggregation and condensation of the particles to form rough surfaces. Consequently, the rough surfaces made by aggregation and condensation of the large particles, which were modified by TMCS resulted in higher contact angles (>140o). In this study, a surface with contact angle 150o was obtained.
關鍵字(中) ★ 氟素高分子
★ 二氧化矽
★ 疏水
關鍵字(英) ★ silica
★ hydrophobic
★ fluoropolymer
論文目次 中文摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
第二章 文獻回顧 6
2-1 前言 6
2-2 蓮花效應簡介 6
2-2-1 超疏水原理 6
2-3 接觸角之物理意義 7
2-4 疏水與超疏水之研究文獻回顧 10
2-4-1以製造表面粗糙度製備疏水與超疏水的方式 11
2-5 溶膠凝膠法之介紹 18
2-6 結論 28
2-7 參考文獻 29
第三章 以溶凝膠法製備氟素高分子/二氧化矽疏水薄膜 32
3-1 前言 32
3-2 實驗 35
3-2-1 實驗藥品 35
3-2-2 實驗儀器 35
3-2-3 實驗方法 35
3-2-4 性質測試 37
3-3 結果與討論 38
3-3-1 R值對接觸角的影響 38
3-3-2 TEOS添加量對接觸角的影響 38
3-3-3 薄膜材料之FTIR檢測 39
3-4 結論 47
3-5 參考文獻 48
第四章 以氟素高分子/二氧化矽粉末製備疏水薄膜 49
4-1 前言 49
4-2 實驗 52
4-2-1 實驗藥品 52
4-2-2 實驗儀器 52
4-2-3 實驗方法 52
4-2-4 性質測試 53
4-3 結果與討論 54
4-3-1 SiO2/PVDF疏水薄膜 54
4-3-2 SiO2/FEP疏水薄膜 60
4-4 結論 63
4-5 參考文獻 64
第五章 以PVDF/PPG或PVDF/PEG製備疏水薄膜 65
5-1 前言 65
5-2 實驗 67
5-2-1 實驗藥品 67
5-2-2 實驗儀器 67
5-2-3 實驗方法 67
5-2-4 性質測試 68
5-3 結果與討論 69
5-3-1 PVDF添加PPG 69
5-3-2 PVDF添加PEG 72
5-4 結論 75
5-5 參考文獻 76
第六章 以兩步驟溶凝膠法製備二氧化矽疏水薄膜 77
6-1 前言 77
6-2 實驗 79
6-2-1 實驗藥品 79
6-2-2 實驗儀器 79
6-2-3 實驗方法 79
6-2-4 性質測試 80
6-3 結果與討論 81
6-3-1 溶膠溶液黏度之變化 81
6-3-2 第一步驟的水添加量對於反應的影響 82
6-3-3 HCl添加量對於反應的影響 89
6-3-4 第二步驟的NH4OH添加量對於反應的影響 94
6-3-5 R值對於反應速率的影響 100
6-4 結論 105
6-5 參考文獻 106
第七章 總結 108
發表文獻 111
參考文獻 chapter 1
1. 聖經,創世紀,第一章,第一節。
2. A. Lafuma, Quere, (2003) Nature Materials, 2, 457–460.
3. A. V. Rao, M. M. Kulkarni, D. P. Amalnerkar, T. Seth, (2003) Journal of Non-crystalline Solids., 330, 187-195.
4. N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, (2003) Langmuir, 19, 5626-5631.
5.H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, G. Z. Cao, (2005) Thin Solid Films, 472, 37– 43.
6. M. Miwa, A. Fujishima, K. Hashimoto, T. Watanabe, (2000) Langmuir, 16, 5754-5760.
7. A. Nakajima; K. Hashimoto, T. Watanabe, (2000) Langmuir, 16, 7044-7047.
8. K. Tadanaga, J. Morinaga, T. Minami, (2000) Journal of Sol-Gel Science and Technology, 19, 211-214.
9. K. Tadanaga, K. Kitamuro, A. Matsuda, T. Minami, (2003) Journal of Sol-Gel Science and Technology, 26, 705-708.
10. A. Nakajima, K. Abe1, K. HashimotoU, T. Watanabe, (2000) Thin Solid Films, 376, 140–143.
11. K. Satoh, H. Nakazumi, (2003) Journal of Sol-Gel Science and Technology, 27, 327-332.
12. K. C. Chang, Y. K. Chen, H. Chen, (2008) Journal of Applied Polymer Science, Vol. 107, 1530–1538.
13. J. Kim, C. J. Kim, (2002) The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 47-482.
14. W. Lee, M. K. Jin, W. C. Yoo, J. K. Lee, (2004) Langmuir, 20, 7665-7670.
15. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, K. K. Gleason, (2003) Nano Letter, 3, 1701-1705.
16. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, (2003) Langmuir, 19, 10624-10627.
17. J. Fresnais a, J.P. Chapel b, F. Poncin-Epaillard,(2006) Surface & Coatings Technology 200,5296 – 5305.
18. N. Zhao, Q. Xie, L. Weng, S.Wang, X. Zhang, J. Xu, (2005) Macromolecules, 38, 8996-8999.
19. N. Zhao, J. Xu, Q. Xie, L. Weng, X. Guo, L. Shi, (2005) Macromolecules Rapid Communication, 26, 1075-1080.
20. N. Zhao, L. Weng, X. Zhang, Q. Xie, J. Xu, (2006) ChemPhysChem, 7, 824-827.
21. M. Jin, X.Feng, L. Feng, T. Sun, J. Zhai, T. Li, L. Jiang, (2005) Advanced Materials, 17, 1977-1981.
22. M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, D. Zhu, (2003)Journal of Physical Chemistry B, 107, 9954-9957.
23. S. Shibuichi, T. Yamamoto, T. Onda, K. Tsuijii, (1998) Journal of Colloidal and Interface Science, 208, 287-294.
24. W. Ming, D. Wu, R. van Benthem, and G. de With, (2005) Nano Letter, 5, No. 11, 2298-2301.
25. Jan Genzer, Kirill Efimenko, (2000) Science, 290, 2130-2132.
chapter 2
1. Barthlott, W., and Neinhuis, C., (1997)Planta, 202, 1-8.
2. Hare, E. F., Shafrin, E. G., Zisman, W. A. J. “Properties of films of adsorbed fluorinated acids”, Phys. Chem., 58, 236-9 (1954).
3. Young, T., (1805) Philos. Trans. R. Soc.London, 95, 65-87.
4. R.N. Wenzel, (1936) Industial and Engineering Chemistry, 28, 988-994.
5. A. B. D. Cassie, S. Baxter, (1944) Transactions of Faraday Society, 40, 546-551.
6. Y. Akamatsu, K. Makita, H. Inaba, T. Minami, (2001) Thin Solid Films, 389, 138-145.
7. H. J. Jeong, D.K. Kim, S.B. Lee, S.H. Kwon, K. Kadonoz, (2001) Journal of Colloid and Interface Science 235, 130–134.
8. S.A. Kulinich, M. Farzaneh, (2004) Surface Science, 573, 379-390.
9. L.A. Belyakova, A.M. Varvarin, (1999) Colloids and Surfaces A:Physicochemical and Engineering Aspects, 154, 285-294.
10. T.I. Suratwala, M.L. Hanna, E.L. Miller, P.K. Whitman, I.M. Thomas, P.R. Ehrmann, R.S. Maxwell, A.K. Burnham, (2003) Journal of Non-Crystalline Solids, 316, 349-363.
11. M.C. Capel-Sanchez, L. Barrio, J.M. Campos-Martin, J.L.G. Fierro, (2004) Journal of Colloid and Interface Science, 277, 146-153
12. A. V. Rao, M. M. Kulkarni, D. P. Amalnerkar, T. Seth, (2003) Journal of Non-crystalline Solids., 330, 187-195.
13. N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, (2003) Langmuir, 19, 5626-5631.
14.H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, G. Z. Cao, (2005) Thin Solid Films, 472, 37– 43.
15. M. Miwa, A. Fujishima, K. Hashimoto, T. Watanabe, (2000) Langmuir, 16, 5754-5760.
16. A. Nakajima; K. Hashimoto, T. Watanabe, (2000) Langmuir, 16, 7044-7047.
17. K. Tadanaga, J. Morinaga, T. Minami, (2000) Journal of Sol-Gel Science and Technology, 19, 211-214.
18. K. Tadanaga, K. Kitamuro, A. Matsuda, T. Minami, (2003) Journal of Sol-Gel Science and Technology, 26, 705-708.
19. A. Nakajima, K. Abe1, K. HashimotoU, T. Watanabe, (2000) Thin Solid Films, 376, 140–143.
20. K. Satoh, H. Nakazumi, (2003) Journal of Sol-Gel Science and Technology, 27, 327-332.
21. K. C. Chang, Y. K. Chen, H. Chen, (2008) Journal of Applied Polymer Science, Vol. 107, 1530–1538.
22. J. Kim, C. J. Kim, (2002) The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 47-482.
23. W. Lee, M. K. Jin, W. C. Yoo, J. K. Lee, (2004) Langmuir, 20, 7665-7670.
24. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, K. K. Gleason, (2003) Nano Letter, 3, 1701-1705.
25. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, (2003) Langmuir, 19, 10624-10627.
26. J. Fresnais a, J.P. Chapel b, F. Poncin-Epaillard,(2006) Surface & Coatings Technology 200,5296 – 5305.
27. N. Zhao, Q. Xie, L. Weng, S.Wang, X. Zhang, J. Xu, (2005) Macromolecules, 38, 8996-8999.
28. N. Zhao, J. Xu, Q. Xie, L. Weng, X. Guo, L. Shi, (2005) Macromolecules Rapid Communication, 26, 1075-1080.
29. N. Zhao, L. Weng, X. Zhang, Q. Xie, J. Xu, (2006) ChemPhysChem, 7, 824-827.
30. M. Jin, X.Feng, L. Feng, T. Sun, J. Zhai, T. Li, L. Jiang, (2005) Advanced Materials, 17, 1977-1981.
31. M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, D. Zhu, (2003)Journal of Physical Chemistry B, 107, 9954-9957.
32. S. Shibuichi, T. Yamamoto, T. Onda, K. Tsuijii, (1998) Journal of Colloidal and Interface Science, 208, 287-294.
33. W. Ming, D. Wu, R. van Benthem, and G. de With, (2005) Nano Letter, 5, No. 11, 2298-2301.
34. Jan Genzer, Kirill Efimenko, (2000) Science, 290, 2130-2132.
35. C.J. Brinker, (1988) Journal of Non-Crystalline Solids, 100, 31-50.
36. C. J. Binker, and G. W. Scherer, (1990) Sol-Gel Science, Academic press, Boston.
37. H. Schroeder, (1969) Physical Thin Film, 5, 87.
38. R. K. Iler, (1979) The Chemistry of Silica (Wiley:New York)
39.周禮君、田珮,(2000)化工技術,第八卷,第五期,152-164。
40. R. Winter, J. B. Chan, R. Frattini, and J. Jonas, (1988) Journal of Non-Crystalline Solids, 105, 214.
41. R. Aelion, A. Loebel, F. Eirich, (1950) Journal of American Chemistry Society, 72, 5750.
chapter 3
1. D. Geschke, N. Leister, M. Steffen, H. Glasel, and E. Hartmann, (1997) Journal of Material Science Letter, 16, 1943.
2. J. G. Bergman, J. H. McFee, and G. R. Crane, (1971) Applied Physics Letter, 18, 203.
3. D. Carrie`re, P. Barboux, F. Chaput, O. Spalla, and J.P. Boilot, (2001) Solid State Ionics, 145,141–147.
4. A. Du Pasquier, P. C. Warren, D. Culver, A. S. Gozdz, G. G. Amatucci, and J.-M. Tarascon, (1999) 12th Solid State Ionics Conference, Halkidiki, Greece.
5. S. Lee, J.-S. Park and T. Randall Lee, (2008) Langmuir, 24, 4817-4826.
6. R.Y.M. Huang, R. Pal and G.Y. Moon, (2000) Journal of Membrane Science, 167, 275–289.
7. S.P. Nunes and K.V. Peinemann, (1992) Journal of Membrane Science, 73, 25–35.
8. Barthlott, W., and Neinhuis, C., (1997) Planta, 202, 1-8.
9. T.OGOSHI, Y.CHUJO, (2005) Journal of Polymer Science: Part A: Polymer Chemistry, 43, 3543-3550.
10. J. Li, J. Fu, Y. Cong, Y. Wu, L. Xue, Y. Han, (2006) Applied Surface Science,252, 2229–2234.
11. J. W. Kim, W. J. Cho, and C. S. Ha, (2002) Journal of Polymer Science: Part B: Polymer Physics, 40, 19–30.
12. G. J. ROSS, J. F. WATTS, M. P. HILL, P. MORRISSEY, (2000) Polymer, Vol.41, 1685-1696.
13. A.H. Broonstra and T.N.M. Bernards, (1989) Journal of Non-Crystalline Solids, 108,249-259.
14. C. J. Brinker, (1988) J. Non-Crystalline Solids, 100, 31-50.
chapter 4
1. 工業材料,232期,2006年四月號。
2. Y. C. Chen, H. C. Lin, and Y. D. Lee, (2004) Journal of Polymer Research, 11, 1-7.
3. Y. C. Chen, C. C. Tsai, and Y. D. Lee, (2004) Journal of Polymer Science: Part A: Polymer Chemistry, 42, 1789-1807.
4. B. B. J. Basu, A. K. Paranthaman, (2009) Applied Surface Science, 255, 4479–4483.
5. T. Ogoshi, Y. Chujo, (2005) Journal of Polymer Science: Part A: Polymer Chemistry, 43, 3543-3550.
6. J. Li, J. Fu, Y. Cong, Y. Wu, L. Xue, Y. Han, (2006) Applied Surface Science,252, 2229–2234.
7. J. W. Kim, W. J. Cho, and C. S. Ha, (2002) Journal of Polymer Science: Part B: Polymer Physics, 40, 19–30.
8. A. Gugliuzza, E. Drioli, (2007) Journal of Membrane Science 300, 51–62.
9. H. J. Busscher, I. Stokroos, H. C. Van Der Mel, P. G. Rouxhet, and J. M. Schakenraad,(1992) Journal of Adhesion Science and Technology,. 6, 347-356.
10. W. Ming, D. Wu, R. van Benthem, and G. de With, (2005) Nano Letter, 5, No. 11, 2298-2301.
11. A. Qu, X. F. Wen, P. Pi, J. Cheng, and Z. Yang, (2008) Polymer International, 57,1287–1294.
12. J. Yang, P. Pi, X. Wen., D. Zheng, M. Xu, J. Cheng, and Z. Yang, (2009)Applied Surface Science, 255, 3507–3512.
13. R.Y.M. Huang, R. Pal and G.Y. Moon, (2000) Journal of Membrane Science, 167, 275–289.
14. S.P. Nunes and K.V. Peinemann, (1992) Journal of Membrane Science, 73, 25–35.
chapter 5
1. A. Nakajima, K. Abe1, K. HashimotoU, T. Watanabe, (2000) Thin Solid Films, 376, 140–143.
2. K. C. Chang, Y. K. Chen, H. Chen, (2008) Journal of Applied Polymer Science, Vol. 107, 1530–1538.
3. J. Li, J. Fu, Y. Cong, Y. Wu, L. Xue, Y. Han, (2006) Applied Surface Science,252, 2229–2234.
4. A. Gugliuzza, E. Drioli, (2007) Journal of Membrane Science 300, 51–62.
5. S. D. Bhagat, Y. H. Kim, K. H. Suh, Y. S. Ahn, J. G. Yeo, J. H. Han, (2008) Microporous and Mesoporous materials, 112, 504-509.
6. A.V. Rao, R. R. Kalesh, (2003) Science and Technology of Advanced Materials, 4, 509-515.
7. A. V. Rao, M. M. K., D.P. Amalnerkar, T. Seth, (2003) Journal of Non-Crystalline Solids, 330, 187–195.
8. Y. H. Zhao, Y. L. Qian, B. K. Zhu, Y. Y. Xu, (2008) Journal of Membrane Science 310, 567–576.
9. R.Y.M. Huang, R. Pal and G.Y. Moon, (2000) J. Membr. Sci., 167, 275–289.
10. S. P. Nunes and K.V. Peinemann, (1992) J. Membr. Sci., 73, 25–35.
11. S. Lee, J.-S. Park and T. Randall Lee, (2008) Langmuir, 24, 4817-4826.
12. G. J. Ross, J. F. Watts, M. P. Hill, P. Morrisey, (2000) Polymer, 41, 1685-1696.
chapter 6
1. Y. Akamatsu, K. Makita, H. Inaba, T. Minami, (2001) Thin Solid Films, 389, 138-145.
2. H. J. Jeong, D.K. Kim, S.B. Lee, S.H. Kwon, K. Kadonoz, (2001) Journal of Colloid and Interface Science 235, 130–134.
3. S.A. Kulinich, M. Farzaneh, (2004) Surface Science, 573, 379-390.
4. Barthlott, W., and Neinhuis, C., (1997)Planta, 202, 1-8.
5. L.A. Belyakova, A.M. Varvarin, (1999) Colloids and Surfaces A:Physicochemical and Engineering Aspects, 154, 285-294.
6. T.I. Suratwala, M.L. Hanna, E.L. Miller, P.K. Whitman, I.M. Thomas, P.R. Ehrmann, R.S. Maxwell, A.K. Burnham, (2003) Journal of Non-Crystalline Solids, 316, 349-363.
7. M.C. Capel-Sanchez, L. Barrio, J.M. Campos-Martin, J.L.G. Fierro, (2004) Journal of Colloid and Interface Science, 277, 146-153
8. A.Venkateswara Rao, Ravindra R. Kalesh, (2003) Science and Technology of Advanced Materials, 4, 509-515.
9. A. Venkateswara Rao, Manish M. Kulkarni, D.P. Amalnerkar, Tanay Seth, (2003) Journal of Non-Crystalline Solids, 330, 187–195
10. A. Venkateswara Rao, Manish M. Kulkarni, Sharad D. Bhagat, (2005) Journal of Colloid and Interface Science, 285, 413-418.
11. S. D.Bhagat, A. V. Rao, (2006) Applied Surface Science, 252,4289-4297.
12. T. M. Tilloson, K.G. Foster, J.G. Renolds, (2004) Journal of Non-Crystalline Solids, 350,202-208.
13. H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, G.Z. Cao, (2005) Thin Solid Films, 472, 37-43.
14. Y. Xu, R. Liu, D. Wu, Y. Sun, H. Gao, H. Yuan, F. Deng , (2005) Journal of Non-Crystalline Solids, 351, 2403-2413.
15. V. D. Land, T. M. Harris, D. C. Teeters, (2001) Journal of Non-Crystalline Solids, 283, 11-17.
16. Y. Y. Huang, K. S. Chou, (2003) Ceramics International, 29, 485–493.
17. Y. C. Chen, C. C. Tsai, and Y. D. Lee, (2004) Journal of Polymer Science: Part A: Polymer Chemistry, 42, 1789-1807.
18. H. Dong, M.A. Brook, and J.D. Brennan, (2005) Chemisty of Materials, 17, 2807-2816.
19. H. Dong, Z. Zhang, Man-Ho Lee, D.W. Mueller, R.F. Reidy, (2007) Journal of Sol-Gel Science Technology, 41, 11–17.
20. J.K. Bailey, T. Nagase, S.M. Broberg, and M.L. Mecartney, (1989) Journal of Non-Crystalline Solids, 109, 198-210.
21. J. K. Lee and G. L. Gould, (2005) Journal of Sol-Gel Science and Technology, 34, 281–291.
22. A.H. Broonstra and T.N.M. Bernards, (1989) Journal of Non-Crystalline Solids, 108,249-259.
23. C.J. Brinker, (1988) Journal of Non-Crystalline Solids, 100, 31-50.
指導教授 陳暉(Hui Chen) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明