博碩士論文 93394008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.219.86.155
姓名 魏沂珮(Yi-Pi Wei)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鈷金屬奈米線陣列製備及其與矽晶界面反應之研究
(Fabrication of Co metal nanowires arrays, and the interfacial reactions between Co metal nanowires and Si substrates.)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著元件尺寸持續縮小,一維的金屬線與金屬線矽化物由於在半導體奈米元件的金屬接點與內連線中具有應用的潛力而逐漸受到重視。因此本研究特別著重於以陽極氧化鋁模板(Anodic Aluminum Oxide, AAO)法結合電鍍技術製備大面積規則排列鈷金屬奈米線陣列,及不同溫度熱處理下鈷金屬與(001) Si之界面反應。
在本實驗中,將利用一有效的陽極氧化鋁模板製程技術,製作出尺寸可控制調變的鈷金屬奈米線。而在實驗中藉由控制電解條件,以適當的電解液中進行處理後,可成功將高純度鋁片製備成有規則排列之孔洞,且孔洞尺寸可調的陽極氧化鋁結構。以電鍍法在奈米孔洞通道中鍍製鈷金屬並移除陽極氧化鋁模板後,便能獲得不同奈米尺度的多晶結構之鈷金屬奈米線。
將奈米尺寸的鈷金屬線滴置在(001) Si基材上經400 ℃ 30分鐘熱處理,可發現試片中主要生成相為CoSi並伴隨有Co2Si相存在。而當溫度提高到500 ℃時,在電子選區繞射(SEAD)圖中發現有CoSi2的繞射環,顯示具有低電阻的CoSi2在此時已開始生成,且其中有部分的CoSi2已形成磊晶結構。CoSi2與(001) Si基材之磊晶關係經鑑定為 [001] CoSi2 // [001] Si and (200) CoSi2 // (400) Si。再將熱處理溫度提升到600 ℃或更高時,在試片中可觀察到奈米線已完全反應形成CoSi2相。然而在高溫熱處理後鈷矽化物的形態出現明顯的聚縮,這些刻面結構在高溫退火後聚縮情形更為明顯。根據TEM與SEAD分析,可鑑定得這些在 (001) Si表面形成磊晶CoSi2奈米線的刻面為倒金字塔的形狀,並且每個點狀的CoSi2角錐體是由一個(001)表面與四個{111}的界面所構成。
摘要(英) As the device dimensions continue to scale down, one-dimensional (1-D) metal and metal silicide nanowires have attracted much attention due to their potential applications as metal contacts and interconnections in the semiconductor nanodevices. Therefore, in this study, particular emphases are focused on the synthesis of large-area, well-aligned cobalt metal nanowire arrays by using the electrodeposition in conjunction with anodic aluminum oxide (AAO) templates technique, and the interfacial reactions between the produced Co metal nanowires and (001)Si substrates after different heat treatments.
To fabricate the size-tunable Co metal nanowire arrays, an effective technique-anodic alumina oxide (AAO) template-mediated process were utilized in the present study. Under controlled anodization conditions, self-ordered, pore-size tunable AAO templates were successfully fabricated by anodization of high-purity aluminum sheets in appropriate acid solutions. After electrodeposition of Co metal into the nanochannels and subsequent removing the AAO templates, a series of polycrystalline Co metal nanowires of different diameters were obtained.
For the nanoscale Co wires on (001)Si samples annealed at 400 ℃ for 30 min, Co2Si phase was found to coexist with the dominant ploycrystalline CoSi phase. With increasing the annealing temperature to 500 ℃, diffraction rings corresponding to the CoSi2 phase were found in the selected area electron diffraction (SAED) pattern, showing that low-resistivity CoSi2 starts growing in the samples. In addition, some of the CoSi2 were found to grow epitaxially. The crystallographic relationship of epitaxial CoSi2 phase with respect to (001)Si substrate was identified to be [001]CoSi2 // [001]Si and (200)CoSi2 // (400)Si. Further annealing at 600 ℃ or above, CoSi2 phase was found to completely form in the samples. However, morphological degradations of Co silicide nanowires were evident in the higher temperature annealed samples. The faceted structures were found to be more prone to form at higher temperatures. Based on TEM and SAED analysis, the faceted structures of epitaxial CoSi2 nanowires formed on (001)Si was identified to be an inverse pyramid in shape, and each pyramidal-shaped CoSi2 dot was composed of one (001) surface and four {111} interfaces.
關鍵字(中) ★ 陽極氧化鋁模板
★ 鈷金屬奈米線
★ 鈷金屬線矽化物
關鍵字(英) ★ AAO
★ Co nanowire
論文目次 摘 要 I
ABSTRACT II
致 謝 IV
圖 目 錄 IX
表 目 錄 XII
第1章 簡介 1
1.1 前言 1
1.2 積體電路與金屬化製程 2
1.2.1 Polycide製程 3
1.2.2 Salicide製程 4
1.3 金屬矽化物 4
1.3.1 鈦矽化物 5
1.3.2 鎳矽化物 6
1.3.3 鈷矽化物 7
1.4 陽極氧化鋁模板 8
1.5 金屬奈米線的應用與製備 10
1.6 研究動機與目標 12
第2章 實驗步驟與儀器 14
2.1 陽極氧化鋁模板(AAO)的生成 14
2.1.1 草酸製程 14
2.1.2 硫酸製程 15
2.2 金屬奈米線的生長 16
2.3 金屬線的取得 17
2.4 電性量測試片的製備 18
2.5 矽晶片的清洗 18
2.6 退火熱處理 19
2.7 試片分析 19
2.7.1 低真空掃描式電子顯微鏡(Low Vacuum Scanning Electron Microscope, LV-SEM) 19
2.7.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM)與X光能量散射光譜儀(Engry Dispersive Spectroscope, EDS) 20
2.7.3 原子力顯微鏡(Atomic Force Microscope, AFM) 20
2.7.4 電性量測儀 21
第3章 結果與討論 22
3.1 陽極氧化鋁模板 22
3.2.1 商用陽極氧化鋁濾膜 22
3.2.2 熱處理 23
3.2.3 自製陽極氧化鋁濾膜 24
3.2 金屬奈米線 26
3.2.1 生長金屬奈米線 26
3.2.2 電性分析 30
3.3 金屬奈米矽化物 30
第4章 結論與未來展望 34
4.1 結論 34
4.2 未來展望 35
4.2.1 小尺寸金屬奈米線陣列與多層結構金屬柱陣列記憶體 35
4.2.2 微型奈米散熱器 36
4.2.3 矽化物陣列與其電性分析 36
參考文獻 38
參考文獻 [1]馬遠榮著, “奈米科技”, 商周出版社 (2002).
[2] D. M. Eigler, and E. K. Schweizer, “Positioning single atoms with a scanning tunnelling microscope”, Nature 344 (1990) 524.
[3] G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38 (1965) number 8.
[4] S. Wolf, “Silicon Processing for the VLSI Era: The Submicron MOSFET”, vol. 3, Sunset, CA: Lattice (1995).
[5]莊達人編著, “VLSI 製造技術”, 高立圖書有限公司 (1997).
[6] E. G. Colgan, J. P. Gambino, and Q. Z. Hong, “Formation and Stability of Silicides on Polycrystalline Silicon”, Mater. Sci. Eng. R16 (1996) 43-96.
[7] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tash, “Composite TiSi2/ n+poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology”, IEEE Trans. Electron. Device 29 (1982) 547-553.
[8] K. Maex, “Silicides for Integrated Circuits: TiSi2 and CoSi2”, Mater. Sc. Eng. R11 (1993) 53-153.
[9] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of Resistance Behavior in Ti- and Ni-Salicided Polysilicon Films”, IEEE Trans. Electron Devices 41 (1994) 2305-2317.
[10] R. Beyers, D. Coulman, and P. Merchant, “Titanium Disilicide Formation on Heavily Doped Silicon Substrates”, J. Appl. Phys. 61 (1987) 5110-5117.
[11] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2”, IEEE Trans. Electron Devices 38 (1991) 262-269.
[12] S. L. Cheng, J. J. Jou, L. J. Chen, and B. Y. Tsui, “Formation of C54–TiSi2 in Titanium on Nitrogen-Ion-Implanted (001)Si with a Thin Interposing Mo Layer”, J. Mater. Res. 14 (1999) 2061-2069.
[13] F. d'Heurle, S. Petersson, L. Stolt, and B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Films”, J. Appl. Phys. 53 (1982) 5678-568.
[14] J. Y. Yew, L. J. Chen, and K. Nakamura, “Epitaxial Growth of NiSi2 on (111)Si inside 0.1-0.6 μm Oxide Openings Prepared by Electron Beam Lithography”, Appl. Phys. Lett. 69 (1996) 999-1001.
[15] C. S. Chang, C. W. Nieh, and L. J. Chen, “Formation of Epitaxial NiSi2 of Single Orientation on (111)Si inside Miniature Size Oxide Openings”, Appl. Phys. Lett. 50 (1987) 259-261.
[16] R. T. P. Lee, D. Z. Chi, M. Y. Lai, N. L. Yakovlev, and S. J. Chua, “Effects of Ti Incorporation in Ni on Silicidation Reaction and Structural/Electrical Properties of NiSi”, J. Electrochem. Soc. 151 (2004) G642-G647.
[17] R.N. Wang, and J. Y. Feng, “Comparison of the Thermal Stabilities of NiSi Films in Ni/Si, Ni/Pd/Si and Ni/Pt/Si Systems”, J. Phys. Condens. Matter 15 (2003) 1935-1942.
[18] W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, “Effect of a Titanium Cap in Reducing Interfacial Oxides in the Formation of Nickel Silicide”, J. Appl. Phys. 91 (2002) 2901-2909.
[19] I. J. van Gurp and C. Langereis, “Cobalt Silicide Layer on Si Structure and Growth”, J. Appl. Phys. 46 (1975) 4301-4307.
[20] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi Formation Through SiO2”, Thin Solid Films 386 (2001) 19-26.
[21] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep Submicron CMOS Devices”, IEDM Tech. Dig. (1995) 449-452.
[22] R. T. Tung, and F. Schrey, “Increased Uniformity and Thermal Stability of CoSi2 Thin Films by Ti Capping”, Appl. Phys. Lett. 67 (1995) 2164-2166.
[23] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial Growth of CoSi on (111) Si Inside Miniature-Size Oxide by Rapid Thermal Annealing”, J. Appl. Phys. 69 (1991) 4282-4285.
[24] J. Y. Yew, L. J. Chena, and W. F. Wu, “Effects of Lateral Confinement on the Growth of CoSi and CoSi2 on (001)Si Inside 0.2±2 µm Oxide Openings Prepared by Electron Beam Lithography”, Mater. Chem. Phys. 61 (1999) 42-45.
[25] I. Y. Hwang, J. H. Kim, S. K. Oh, H. J. Kang and Y. S. Lee, “Ultrathin Cobalt Silicide Film Formation on Si(100)”, Surf. Interface Anal. 35 (2003) 184-187.
[26] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. 76 (2000) 2011-2013.
[27] Robert M. Metzger, Valery V. Konovalov, Ming Sun, Tao Xu, Giovanni Zangari, Bin Xu, Mourad Benakli, and W. D. Doyle., “Magnetic nanowires in hexagonally ordered pores of alumina”, IEEE Trans. Magn. 36 (2000) 30-35.
[28] K. Nielsch, F. Muller, A.-P. Li, and U. Gosele., “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition”, Adv. Mater. 12 (2000) 582-586.
[29] K. Nielsch, R. Hertel, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. G
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2007-5-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明