博碩士論文 93394012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.188.246.157
姓名 邱筱雯(Shiao-Wen Chiu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化矽擔載銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究
(Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO2 catalysts)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以氧化矽為擔體,利用沈澱固著法製備成氧化矽擔載銅觸媒,目的在發展氧化性甲醇蒸氣重組反應(CH3OH + 0.5H2O + 0.25O2 → 2.5H2 + CO2)產製氫氣的程序,利用感應耦合電漿質譜分析儀(ICP-MS)、熱重分析儀(TGA)、X射線繞射儀(XRD)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)及X射線光電子分析儀(XPS)、程式升溫還原(TPR)、N2O分解吸附(dissociative adsorption of nitrous oxide)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,藉以評估觸媒應用於質子交換膜燃料電池的可行性。從XRD結果看到銅的繞射峰不明顯,判斷為銅晶粒很小且結晶性不好。由TPR圖譜可看出,銅載量愈高愈難還原,不同煅燒溫度有相似的還原溫度。N2O分解吸附的結果,可看到當銅載量由4.7 wt%增加到24.4 wt%,其分散度會降低,而銅觸媒比表面積會變大,平均粒徑則由1.52增加至3.56 nm。從TEM的分析結果發現,以沈澱固著法製備出的銅觸媒,晶粒呈現圓球狀,晶粒會隨載量增加及煅燒溫度增加而變大,在OSRM反應後也有燒結現象。SEM則看出觸媒的表面結構為眾多網狀結構構成的板狀結構。由XPS的結果中發現,未煅燒過的觸媒中,Cu以三種狀態存在,金屬態(Cu0)、氧化態(Cu2+)以及Cu(OH)2;經過673 K煅燒、600 K還原,其狀態會由氧化銅還原成金屬銅,當經過OSRM反應後,大部分的金屬銅則被氧化,推斷金屬銅為主要活性部位,因此銅觸媒在OSRM反應中需先以氫氣在600 K下還原1小時。經過活性測試後發現,觸媒的活性與銅的顆粒大小及觸媒比表面積有絕對的關係,當銅觸媒比表面積愈大且顆粒又小時,氫氣選擇率越高,這也是17.3 wt%的Cu/SiO2化性反應較好的原因。另外進料中O2/CH3OH及H2O/CH3OH的莫耳比也是影響反應的因素,當O2/CH3OH 莫耳比= 0.25和H2O/CH3OH莫耳比=1時,甲醇轉化率可達到93%,氫氣產生速率可達到255 mmolkg-1s-1,而一氧化碳的選擇率則在2%以下。當增加反應溫度時,甲醇轉化率與氫氣選擇率都會同時增加。反應路徑假設為由連續的氧化性甲醇蒸氣重組、甲醇部分氧化、甲醇直接分解與甲醇蒸汽重組反應構成。
  本研究所製備的氧化矽擔載銅觸媒在OSRM反應中有高度活性,能產生低一氧化碳的氫氣,是一種性能極佳的觸媒,此反應亦可適用於燃料電池的電動車。
摘要(英) Selective production of hydrogen by oxidative steam reforming of methanol (OSRM)(CH3OH + 0.5H2O + 0.25O2 → 2.5H2 + CO2) over Cu/SiO2 catalysts, prepared by deposition-precipitation method was studied. The catalysts were characterized by ICP-MS, TGA, TPR, Dissociative adsorption of nitrous oxide, XRD, SEM, TEM and XPS analyses. XRD patterns of Cu/SiO2 catalysts showed unclear peak or broad peak of metallic copper or copper oxide, it indicated that the copper species particles, which are amorphous or very small and highly dispersed within the matrix. From TPR, it was difficult to reduce for higher copper loading, had similar reduction temperature with different calcination temperature. Form dissociative adsorption of nitrous oxide, copper loading increases from 4.7 to 24.4 wt% with decrease in dispersion and increase in metallic surface area. TEM images show that copper crystallites are spherical in shape. The particles size of copper increases with increasing the copper loading and calcinaiton temperature. The catalysts were sintering after OSRM reaction. SEM observations show that plate-like structure of these catalysts is formed with great net work structure. XPS analyses demonstrate that in uncalcined catalysts copper existed in three different states i.e. metallic copper (Cu0), copper oxide (Cu2+) and copper hydroxide (Cu(OH)2). After calcination at 673 K and reduction at 600 K the copper states change from copper oxide to metallic copper. Upon reaction, the state reduce to copper oxide that proved metallic copper is the active site. The catalytic activity of Cu/SiO2 catalysts for the OSRM reaction significantly depended on the particle size and surface area of metallic copper. Increasing surface area and decreasing particle size raises the hydrogen production rate. In this study, the catalyst with 17.3 wt% loading and calcined at 673 K showed the highest activity for methanol conversion and hydrogen production. The appropriate molar ratios of O2/CH3OH and H2O/CH3OH for reaction were 0.25 and 1.0, respectively. Both hydrogen production rate and methanol conversion increased with increasing reaction temperature. The reaction pathway is suggested to consist of consecutive oxidative steam reforming of methanol, partial oxidation of methanol, methanol decomposition, and methanol steam reforming. The Cu/SiO2 catalysts showed high activity for OSRM that produce high hydrogen with low carbon monoxide. Therefore, the application of OSRM reaction over Cu/SiO2 in the fuel cells for electric-powered vehicles can be expected.
關鍵字(中) ★ 氧化矽擔載銅觸媒
★ 氧化性甲醇蒸氣重組
★ 氫氣
關鍵字(英) ★ Hydrogen
★ Silica supported copper catalysts
★ OSRM
論文目次 中文摘要 I
英文摘要 III
目錄 V
圖目錄 IX
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 燃料電池原理 2
1.3 燃料電池的種類 5
1.4 甲醇製氫 8
1.5 擔體銅觸媒 9
1.6 研究內容與論文架構 10
第二章 文 獻 回 顧 12
2.1銅的物性與化性 12
2.2沈澱固著法製備擔載銅觸媒 12
2.3煅燒與還原程序 15
2.3-1煅燒程序 16
2.3-2還原程序 17
2.4 擔體效應 17
2.5銅金屬表面積的測定 19
2.6 銅的活性位置 20
2.7 氧化性甲醇蒸氣重組反應 21
第三章 實驗方法與裝置 26
3.1 擔載銅觸媒的製備 26
3.2 擔體銅觸媒的鑑定分析 28
3.2-1 感應耦合電漿質譜儀(ICP-MS)分析 29
3.2-2 熱重分析(TGA) 29
3.2-3 X射線繞射分析(XRD) 31
3.2-4 程式升溫還原(TPR) 32
3.2-5 銅金屬表面積的量測 36
3.2-6 掃描式電子顯微鏡(SEM)分析 39
3.2-7 穿透式電子顯微鏡分析(TEM) 41
3.2-8 X射線光電子分析(XPS) 43
3.3 觸媒活性測試—氧化性甲醇蒸氣重組產製氫氣反應 45
3.4 實驗流程與操作變數 47
3.5 數據的計算與實例 49
3.5-1 銅觸媒理論載量的定義與計算 49
3.5-2 轉化率的定義與計算 49
3.5-3 選擇率的定義與計算 54
3.5-4 產生速率的定義與計算 56
3.6 藥品、氣體及儀器設備 58
3.6-1 藥品 58
3.6-2 氣體 59
3.6-3 儀器設備 59
第四章 結果與討論 61
4.1 物性分析 61
4.1-1 銅離子濃度對銅金屬載量的影響 61
4.1-2 煅燒條件的選擇 63
4.1-3 程式升溫還原(TPR)分析結果 65
4.1-4 觸媒表面積測定 70
4.1-5 X射線繞射分析(XRD) 72
4.1-6 穿透式電子顯微鏡(TEM) 77
4.1-7 掃描式電子顯微鏡(SEM) 79
4.1-8 X射線光電子分析(XPS) 83
4.2 化性分析 88
4.2-1 銅載量對觸媒活性的影響 88
4.2-2 煅燒溫度對觸媒活性的影響 92
4.2-3 進料比例對觸媒活性的影響 96
4.2-3-1 不同O2/CH3OH 比的影響 96
4.2-3-2 不同H2O/CH3OH莫耳比的影響 100
4.2-4 反應溫度對觸媒活性的影響 107
4.2-5 Cu/SiO2觸媒與文獻上常用觸媒在氧化性甲醇蒸氣重組反應上之分析結果比較 109
第五章 結論 113
參考文獻 117
參考文獻 Agrell, J., Hasselbo, K., Jansson, K., Jaras, S.G., Boutonnet, M., “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Appl. Catal.A: Gen. 211 (2001)239.
Agrell, J., Lindström, B., Pettersson, L.J., Jaras, S.G., “Catalytic hydrogen generation from methanol”, Catalysis V16 (2002) 67.
Agrell, J., Boutonnet, M., Melian-Cabrera, I., Fierro, J.L.G., Production of hydrogen from methanol over binary Cu/ZnO catalysts”, Appl.Catal. A:Gen.253(2003) 201.
Alejo,L., Lago, R., Pena, M.A., Fierro, J.L.G., “Partial oxidation of methanol to produce hydrogen over Cu---Zn-based catalysts”, Appl.Catal. A:Gen. 162 (1997) 281.
Balkenende, A.R., Van Kooten, W.E.J., Pieters, A.R., Lamers, M., Janssen, F.J.J.G., Geus, J.W., “XPS surface characterization of a Cu/SiO2 catalyst oxidized by NO or O2”, Appl.Surf.Sci.,68(1993)439.
Bond, G.C., Namijo, S.N., Wakeman, J.S., “Thermal analysis of catalyst precursors Part 2. Influence of support and metal precursor on the reducibility of copper catalysts”, J.Mol.Catal.64(1991)305.
Bond, G.C., Namijo, S.N., “An improved procedure for estimating the surface area of supported copper catalysts”, J.Catal.118(1989)507.
Breen, J.P., Meunier, F.C., Ross, J.R.H., “Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst”, Chem. Commun. (1999) 2247.
Burch, R., Chappell, R.J., “Support and additive effects in the synthesis of methanol over copper catalysts”, Appl.Catal.45 (1988)131.
Carter, J.L., Cusumano, J.A.,Sinfelt, J.H., J.Phy.Chem.,70(1966)2257.
Chang, H.F., Saleque, M.A., Hsu, W.S., Lin, W., “Characterization and dehydrogenation activity of Cu/Al2O3 catalysts prepared by electroless plating technique”, J.Mol.Catal.A 109(1996) 249.
Chen., H.W., White, J.M., Ekerdt, J.G., “Electronic effect of supports on copper catalysts”, J.Catal.99(1986)293.
Costantino, U., Marmottini,F., Sisani, M., Montanari, T., Ramis, G., Busca, G., Turco, M., Bagnasco, M., “Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol” , Solid State Ionics 176(2005)39.
De Jong, K.P., Geus,J.W., Joziasse, J., “An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide”, J.Catal.,65(1980)437.
Dvo ák, B., Pa ek, J., “Determination of the specific copper surface area by chromatographic technique”, J.Catal.18(1970)108.
Edwards, N., Ellis, S.R., Frost, J.C., Golunski, S.E., Keulen, A.N.J.V., Lindewald, N.G., Reinkingh, J.G., “On-board hydrogen generation for transport applications: the HotSpot™ methanol processor”, J. Power Sources 71 (1998) 123.
Emonts, B., Menze, R., Riedel, E., “Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer”, J. Power Sources 61 (1996) 143.
Evans, J.W., Winwright, M.S., Bridgewater, A.J., Young, D.J., “On the determination of copper surface area by reaction with nitrous oxide”Appl, Catal., 7(1983)75.
Fujita, S.,Usui, M., Ito, H., Takezawa, N., “Mechanisms of methanol synthesis from carbon dioxide and from carbon monoxide at atmospheric pressure over Cu/ZnO”, J.Catal.157(1995)403.
Gil, A., Diaz,A. Gandia, L.M., Montes, M., “Influence of the preparation method and the nature of the support on the stability of nickel catalysts” , Appl.Catal.A 109(1944)167.
Guerreiro, E.D., Gorriz, O.F., Rivarola, J.B., Arrua, L.A., “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation”, Appl.Catal. A: Gen. 165(1997)259.
Hohlein, B.J., Bogild, H., Brockerhoff, P., Colsman, G., Emonts, B., Menzer, R., Riedel, E., “Hydrogen from methanol for fuel-cells in mobile systems-development of a compact reformer”, Journal of Power Sources. 61 (1996)143.
Hoogers. G, Fuel cell technology handbook, (2002).
Horny, C., Renken, A., Kiwi-Minsker, L., “Compact string reactor for autothermal hydrogen production”, Catal.Today 120 (2007)45.
Huang, T.J., Wang, S.W., “Hydrogen production via partial oxidation of methanol over copper-zinc catalysts”, Appl.Catal.24(1986)287.
Huang, T.J., Wang, S.W., “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”,Appl.Catal.40(1988)43.
Kudelski, A., Pettinger, B., “Raman study on methanol partial oxidation and oxidative steam reforming over copper”, Surf.Sci.566(2004)1007.
Lenarda, M., Moretti, E., Storaro, L., Patrono, P., Pinzari, F., Castellon ,E. R., Lopez,A.J., Busca ,G., Finocchio, E., Montanari,T., Frattini,R., “Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming”, Appl. Catal.A: Gen.312(2006)220.
Lindström, B., Pettersson, L.J., “Development of a methanol fuelled reformer for fuel cell applications”, J.Power Sources 118(2003)71.
Lindström, B., Pettersson, L.J., Govind Menon, P., “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles”, Appl. Catal. A: Gen. 234 (2002) 111
Liu, S., Takahashi, K., Ayabe, M., “Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading”, Catal. Today 87(2003)247
Liu,S., Takahashi,K., Ayabe,M.,Uematsu,K., “Hydrogen production by oxidative methanol reforming on Pd/ZnO”, Appl. Catal.A: Gen.283 (2005)125.
Liu,S., Takahashi,K., Fuchigami,K.,Uematsu,K., “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation”, Appl. Catal.A: Gen.299 (2006)58.
Lwin, Y., Daud, W.R.W., Mohamad, A.B. Yaakob, Z., Int. J. Hydrogen Energy 25(2000)47.
Murcia-Mascaro´s ,S., Navarro, R.M., Go´mez-sainero, L., Costantino, U., Nocchetti, M., Fierro ,J.L.G., “Oxidation methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors”, J. Catal. 198 (2001) 338.
Mile,B.D.,Stirling, M.A.,Zammitt, Lovell,A.,Webb,M., ”The location of nickel oxide and nickel in silica-supported catalysts:Two forms of “NiO” and the assignment of temperature programmed reduction profiles”J. Catal.114 (1988) 217.
Narita, K., Takeyawa, N., Kobayashi, J., Toyoshima, I., “Adsorption of nitrous oxide on metallic copper catalysts”, React.Kinet. Catal. Lett. 19 (1982)91.
Oetjen, H.F., Schmidt, V.M., Stimming, U., Trila,F., “Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas”, J. Electrochem. Soc.143 (1996)3838.
Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H.H., “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction”, J.Mol.Catal.A: Chem. 162 (2000a) 275.
Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H.H., “Methanol reforming over CuO/ZnO under oxidizing conditions”, Stud. Surf.Sci. Catal. 130 (2000b) 3645.
Reitz,T.L., Lee, P.L., Czaplewski, K.F., Lang ,J.C., Popp, K.E., Kung, H.H., “Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction”, J. Catal. 199 (2001) 193.
Ruettinger, W., Ilinich, O., Farrauto, R.J., “A new generation of water gas shift catalysts for fuel cell applications ”, J.Power Sources 118 (2003) 61.
Richardson, J.T., Dubus, R.J., ”Crystallite size distributions of sintered nickel catalysts”J.Catal. 57(1979)417.
Service, R.F., “Hydrogen power: Bringing fuel cells down to earth”, Science 285, 682(1999).
Suzuki, K.,Velu, S., Okazaki, M., Kapoor, M.P., Osaki, T., Ohashi, F., “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation”, J.Catal. 194 (2000) 373.
Suzuki, K., Velu, S., Okazaki, M., Kapoor, M.P., Ohashi, F., Osaki, T., ”Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A Gen.213 (2001) 47.
Suzuki, K.,Velu, S., Osaki, T., “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells”, Chem. Commun. (1999) 2341.
Sengupta, G., Gupta, D.K., Kundu, M.L., Sen, S.P., “Effect of reduction conditions upon metal area in CuO-ZnO catalyst”, J.Catal. 67(1981)223.
Shan, W., Feng, Z., Li, Z., Zhang, J., Shen, W., Li, C., “Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods”, J.Catal.228(2004)206.
Shen, J.P., Song, C., “Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for full cells”, catal. Today 77(2002)89.
Taylor, H.S., Adv. Catal., 1 (1948)1.
Turco, M., Bagnasco, G., Costantino,U., Marmottini, F., Montanari , T., Ramis, G., Busca, G., “Production of hydrogen from oxidative steam reforming of methanol Ⅰ.Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor”, J.Catal. 228(2004a)43.
Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., Busca, G., “Production of hydrogen from oxidative steam reforming of methanol П.Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts”, J.Catal. 228(2004b)56.
Van den Oetelaar, L.C.A., Partridge,A., Staple, P.J.A.,Flipse, Brongersma, C.F.J., Brongersma, H.H., “A Surface science study of model catalysts. 2.Metal-support interactions in Cu/SiO2 model catalysts”, J. Phys. Chem. B 102(1998)9532.
Van Der Grift, C.J.G., Elberse, P.A., Mulder,A., Geus, J.W., “Preparation of silica-supported copper catalysts by means of deposition- precipitation”, Appl. Catal. 59 (1990a)275.
Van Der Grift, C.J.G., Mulder, A., Geus, J.W., “Characterization of silica-supported copper catalysts by means of temperature - programmed reduction”, Appl. Catal.60 (1990b) 181
Van Der Grift, C.J.G., Wielers, Mulder,A., Geus, J.W., “The reduction behaviour of silica-supported copper catalysts prepared by deposition - precipitation”, Thermochim. Acta, 171 (1990c) 95
Van Der Grift, C.J.G., Wielers, A.F.H., Joghi, B.P.J., Van Beijnum, J., De Boer, M., Versluijs-Helder, M., Geus, J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, J.Catal.131 (1991)178.
Van Dillen,A.J.,Geus,G.W., Hermans,M.A.L.,Van der Meijden, J., “Proceedings, 6th international congress on catalysis, London, 1976” ,Chem. Soc., 677(1977)
Van Oosterwijck-Gastuche,M.C.,Gregoire,C., Mineral.Soc.Jpn.Spec., 196 (1971)
Wang,Z.,Liu,Q.,Yu,J.,Wu,T.,Wang,G., “Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods”, Appl.Catal.A:Gen.239 (2003a)87
Wang,Z.,Wang, W., Lu, G., “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, Int. J. Hydrogen Energy 28(2003b)151.
Wigley, T.M.L., Richels,R., and Edmonds, J.A., “Economic and environmental choices in the stabilization of atmospheric CO2 concentrations”, Nature 379 (1996)240.
Zhang, R., Sun,Y., Peng, S., “Dehydrogenation of methanol to methyl formate over CuO-SiO2 gel catalyst”, React. Kinet. Catal. Lett 67 (1999) 95.
Handbook of The Elements and Native Oxides, 1999XPS International, Inc.
吳榮宗, “工業觸媒概論” 增訂版, 興國出版社 (1980).
李秉傑, 邱宏明, 王亦凱, 合譯 “非均勻系催化原理與應用” , 渤海堂文化事業有限公司 (1988) .
姚品全, “淺談銅觸媒” , 觸媒與製程, 8(2), (2000) 47.
謝銘仲, “以稻殼灰分沈澱固著製備擔體銅觸媒特性之研究” , 國立中央大學化學工程研究所碩士論文 (2002).
黃鎮江, “燃料電池”,全華科技圖書股份有限公司(2003)。
涂耀仁, 陳郁文, “銅觸媒在醇類脫氫反應之應用”, 觸媒與製程,2(1)(1993)24.
本間琢也,王建義譯, “圖解燃料電池百科”, 全華科技圖書股份有限公司。
指導教授 張奉文(Feg-Wen Chang) 審核日期 2007-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明