博碩士論文 943204003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.16.82.208
姓名 許擇倫(Tse-lun Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以無電鍍法製備純鈷金屬薄膜與空心奈米管之研究
(Fabrications of pure Co thin film and hollow Co nanotubes by using the electroless Co deposition technique)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 無電鍍鈷金屬薄膜由於擁有獨特的化學、磁性和機械性質,近來已經被廣泛的應用在各種工業上。然而,在現有的無電鍍鈷金屬薄膜中,常會發現含有其他的雜質如硼、磷等,這些雜質將會導致其可利用程度降低。因此,急需一個新的無電鍍製程來鍍製純鈷金屬薄膜。
在本研究中,我們利用聯胺作為還原劑,並以一個新的無電鍍製程在矽晶基材上沉積高純度鈷金屬薄膜。首先,將清洗過的(001)矽晶基材分別置入敏化劑(SnCl2/HCl)和活化劑(PdCl2/HCl)中進行前處理步驟。隨後將經過前處理的矽晶試片置入配置好的無電鍍鈷金屬鍍浴中,分別在30-45 ℃之間鍍製6-20分鐘。溶液中的鈷金屬離子藉由聯胺還原反應成鈷金屬,並在矽晶基材上形成一連續鈷金屬薄膜層。經由TEM和SAED分析,可得知所鍍製薄膜為HCP的純鈷金屬多晶相結構。除此之外,藉由EDS的分析所得到的結果,可進一步鑑定得原始鍍製的鈷金屬薄膜只含有純鈷金屬,並無其他雜質。另外,由XTEM的觀察結果可以發現,以無電鍍法鍍製的純鈷金屬薄膜其厚度在30-45 ℃之間時,會隨著時間呈線性增加,我們進一步求出不同溫度時的反應速率,藉由阿瑞尼士方程式我們可求得此純鈷薄膜成長活化能為0.34 eV。
在另一方面,在本研究中我們還嘗試利用以聯胺為還原劑的無電電鍍製程,並以非晶質氧化矽(a-SiOx)奈米線做為模板,配合移除中心模板後法,已可初步製備出大量高純度鈷金屬奈米空心管。實驗中有系統地以SEM、TEM和SAED分別分析觀察不同條件製備的試片的表面形狀、晶體結構和化學組成。
摘要(英) Electroless cobalt film has been widely used for many industrial applications due to its unique chemical, magnetic, and mechanical properties. However, a dramatic amount of impurities (e.g. B or P) were usually found to exist in the electroless Co layers. For microelectronic applications, these impurities would lead to reliability degradation. Therefore, the routes for electroless synthesis of pure Co metal layers are demanded.
In this study, a new and facile route for the electroless deposition of high-purity Co metal thin films on silicon substrate has been developed by using the hydrazine-modified electroless Co deposition processes. The as-cleaned (001)Si substrates were first presensitized and preactivated by treatment with the solutions of SnCl2/HCl and PdCl2/HCl, respectively. Subsequently, the activated Si substrates were immersed into the electroless Co plating baths at 30-45 ℃ for 6-20min. The Co ions were reduced to Co and then deposited onto the surface of the Si substrates to form a continuous Co layer. Form TEM and SAED analysis, diffraction rings corresponding to the pure HCP-Co phase were detected in the SAED pattern, indicating that the crystal structure of the electroless Co layer was polycrystalline. In addition, form EDS analysis, it is clearly shown that the as-deposited Co thin films were entirely composed of pure cobalt. From XTEM observation, the thickness of electroless pure Co thin films was found to increase linearly with plating time at the electroless plating temperatures of 30-45 ℃. Furthermore, by measuring the growth rate at different electroless plating temperatures, the activation energy for the linear growth of the pure Co thin films on blank-(001)Si was obtained from an Arrhenius plot to be about 0.34eV.
On the other hand, in this study, we proposed a new route for the large-scale synthesis of high-purity hollow Co nanotubes by employing the hydrazine-modified electroless Co deposition in conjunction with removable amorphous silicon oxide (a-SiOx) nanowire templates technique. The surface morphology, crystal structure, and chemical composition of the synthesized products were systematically characterized by SEM, TEM, and SAED.
關鍵字(中) ★ 無電鍍鈷金屬 關鍵字(英) ★ electroless pure Co thin film
論文目次 第1章 前言及文獻回顧 1
1.1前言 1
1.2物理氣相沉積( Physical Vapor Deposition, PVD ) 3
1.2.1蒸鍍( Evaporation ) 3
1.2.2濺鍍( Sputtering ) 4
1.3化學氣相沉積( Chemical Vapor Deposition, CVD ) 4
1.4電化學 5
1.5電化學沉積法 6
1.5.1電鍍( Electrodeposition ) 6
1.5.2無電鍍( Electroless Deposition ) 7
1.5.2.1前處理( Pretreatment ) 8
1.5.2.2鍍液組成( Composition ) 9
1.6研究動機 13
1.6.1無電鍍製備純鈷金屬薄膜 13
1.6.2以無電鍍及模板法製備鈷金屬奈米管 14
第2章 實驗步驟及分析儀器 15
2.1實驗步驟 15
2.1.1矽晶片清洗 15
2.1.2製備氧化矽奈米線模板 16
2.1.3前處理 16
2.1.4無電電鍍純鈷金屬薄膜 17
2.2試片分析 17
2.2.1掃描式電子顯微鏡( Scanning Electron Microscope, SEM ) 17
2.2.2原子力顯微鏡( Atomic Force Microscopy, AFM ) 17
2.2.3穿透式電子顯微鏡( Transmission Electron Microscope, TEM )與X光能量散佈光譜儀( Engry Dispersive Spectroscope, EDS ) 18
2.2.4高解析穿透式電子顯微鏡( High-Resolution Transmission Electron Microscope, HRTEM ) 18
第3章 以無電鍍法於矽晶基材上製備純鈷金屬薄膜及其成長動力學之研究 20
3.1鍍液的成份及條件之選擇 20
3.2薄膜表面觀察 21
3.2.1掃描式電子顯微鏡 21
3.2.2原子力學顯微鏡 23
3.3以TEM進行微結構觀察、相鑑定及成份分析 23
3.4薄膜成長速率及活化能計算 24
第四章 以無電鍍及模板法製備純鈷金屬奈米管之研究 27
4.1鍍液成份及條件之選擇 27
4.2以SEM觀察奈米線表面 27
4.3以TEM進行微結構觀察、相鑑定 29
第五章 結論與未來展望 31
5.1結論 31
5.2未來展望 31
5.2.1奈米管與奈米球的製備 31
5.2.2合金奈米管及奈米球 32
參考文獻 33
表目錄 37
圖目錄 42
參考文獻 [1] 張景學, 吳昌崙, “半導體製造技術”, 新文京出版社, 2003。
[2] 陳季南, 周釗生, 洪宗伯, “金屬矽化物薄膜的鑑定與分析”, 電子月刊, 第二卷, 第七期, 73-78。
[3] E. G. Colgan, J. P. Gambino, and Q. Z. Hong, “Formation and Stability of Silicides on Polycrystalline Silicon”, Mater. Sci. Eng. R16 (1996) 43-96.
[4] 陳力俊主編, “微電子材料與製程”, 中國材料科學學會出版, 2000。
[5] 莊達人, “VLSI製造技術”, 高立圖書有限公司出版, 2006。
[6] Y. Shacham-Diamand, and Y. Sverdlov, “Electrochemically Deposited Thin Film Alloys for ULSI and MEMS Applications”, Microelec. Eng. 50 (2000) 525-531.
[7] Z. Shi, S. Wu, and J. A. Szpunar, “Self-assembled Palladium Nanowires by Electroless Deposition”, Nanotechnology 64 (2006) 2161-2166.
[8] 羅吉宗, “薄膜科技與應用”, 全華科技出版, 2005。
[9] 黃瑞雄, 顏溪成, “漫談電化學”, 科學發展, 359 (2002) 22-27。
[10] 萬其超, “電化學”, 台灣商務出版, 1996。
[11] 川崎元雄, “電鍍學”, 世一出版, 1993。
[12] 蘇癸陽, “實用電鍍理論與實際”, 台南富文書局出版, 2000。
[13] 宋抑恆, “鍍鎳的理論與實務”, 徐氏基金出版, 1989。
[14] S. S. Djoki, “Electroless Deposition of Cobalt Using Hydrazine as a Reducing agent”, J. Electrochem. Soc. 144 (1997) 2358-2363.
[15] Z. Y. Li, C. H. Han, and J. Y. Shen, “Reaction Kinetics of Reduction of Co2+ by Hydrazine in Solution for the Preparation of Cobalt Nanoparticles”, Acta Chimica Sinica 64 (2006) 295-300.
[16] Y. Sverdlov, and Y. Shacham-Diamand, “Electroless Deposition of Co(W) Thin Films”, Microelectron. Eng. 70 (2003) 512-518.
[17] W. L. Liu, S. H. Tsai, and W. J. Chen, J. “Growth Kinetics of Electroless Cobalt Deposition by TEM”, Electrochem. Soc. 151 (2004) C680-C683.
[18] H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, and X. Liu, “Generation and Growth Mechanism of Metal (Fe, Co, Ni) Nanotube Arrays”, Chem. Phys. Chem. 7 (2006) 1500-1504.
[19] R.J. Gilliam, S. J. Thorpe and D.W. Kirk “A Nucleation and Growth Study of Gold Nanowires and Nanotubes in Polymeric Membranes”, J. Appl. Electrochem. 37 (2007) 233-239.
[20] F. Wang, S .Arai, and K. C. Park, “Synthesis of Carbon Nanotube-supported Nickel-phosphorus Nanoparticles by an Electroless Process”, Carbon 7 (2006) 1307-1310.
[21] X. H. Chen, ; C.S. Chen, H. N. Xiao, H. B. Liu, L. P. Zhou, S. L. Li, and G. Zhang, “Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits”, Tribol. Int. 39 (2006) 22-28.
[22] L. Guo, S. Yang, and C. Chen, “One-step Solution Fabrication of Magnetic Chains Consisting of Jingle-bell-shaped Cobalt Mesospheres”, Appl. Phys. Lett. 89 (2006) 1031051-1031053.
[23] C. C. Büttner, and M. Zachariasa “Retarded Oxidation of Si Nanowires”, Appl. Phys. Lett. 89 (2006) 263106-263110.
[24] G Bilalbegovi´c, “Electronic Properties of Silica Nanowires”, J. Phys. Condens. Matter 18 (2006) 3829-3836.
[25] H. H. Hsu, C. W. Teng, S. J. Lin, and J. W. Yeh, “Sn/Pd Catalyzation and Electroless Cu Deposition on TaN Diffusion Barrier Layers”, J. Electrochem. Soc. 149 (2002) C143-C149.
[26] L. Li, M. An, and G. Wu, “A New Electroless Nickel Deposition Technique to Metallise SiCp/Al Composites”, Surf. Coat. Technol. 200 (2006) 5102-5112.
[27] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers:An Approach to SERS Substrates”, Science 267 (1995) 1629-1632.
[28] 陳季南, 周釗生, “穿透式電子顯微鏡( TEM )在半導體製成之應用”, 電子月刊, 第三卷, 第三期, 99-111。
[29] 陳力俊, “材料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心出版, 1994。
[30] Michael Quirk, and Julian Serda, “半導體製造技術”, 滄海書局出版, 2003。
[31] Z. Shi, S. Wu, and J. A. Szpunar, “Synthesis of Palladium Nanostructures by Spontaneous Electroless Deposition”, Chem. Phys. Lett. 422 (2006) 147-151.
[32] Y. Zhu, H. Zheng, Q. Yang, A. Pan, Z. Yang, and Y. Qian,“Growth of Dendritic Cobalt Nanocrystals at Room Temperature”, J. Cryst. Growth 260 (2004) 427-434.
[33] G. L. Ding, S. N/ Tewari, “Dendritic Morphologies of Directionally Solidified Single Crystals Along Different Crystallographic Orientations”, J. Cryst. Growth 236 (2002) 420-428.
[34] J. Alvarez, E. Lundgren, X. Torrells, S. Ferrer, ”Effect of a Surfactant in Homoepitaxial Growth of Ag (001): Dendritic Versus Faceted Island Morphologies”, Surf. Sci. 464 (2000) 165-175.
[35] S. Z. Wang, H. W. Xin, “Fractal and Dendritic Growth of Metallic Ag Aggregated from Different Kinds of γ-Irradiated Solutions”, J. Phys. Chem. B 104 (2000) 5681-5685.
[36] Q. Peng, Y. J. Dong, Z. X. Deng, Y. D. Li, “Selective Synthesis and Characterization of CdSe Nanorods and Fractal Nanocrystals”, Inorg. Chem. 41 (2002) 5249-5254.
[37] Z. R. Tian, J. Liu, J. A. Voigt, H. F. Xu, M. J. Mcdermott, “Dendritic Growth of Cubically Ordered Nanoporous Materials through Self-Assembly”, Nano Lett. 3 (2003) 89-92.
[38] G. S. Chen, Y. S. Tang, S. T. Chen, and T. J. Yang, “Electroless Deposition of Ultrathin Co-B Based Barriers for Cu Metallization Using an Innovative Seeding Technique”, Electrochem. Solid-State Lett. 9 (2006) C141-C145.
[39] K. Ito, S. Yae, T. Hamada, H. Nakano, N. Fukumuro, and H. Matsuda, “Autocatalytic Deposition of Pure Nickel Films Having Bright Surfaces and High Electrical Conductivity”, Electrochem. Commun. 2 (2005) 123-127.
[40] S. Yae, K. Ito, T. Hamada, N. Fukumuro, and H. Matsuda, “Electroless Deposition of Pure Nickel Films from a Simple Solution Consisting of Nickel Acetate and Hydrazine”, Plat. and Surf. Finish. (2005) 58-62.
[41] Y. Yamauchi, T. Yokoshima, T. Momma, T. Osaka, and K. Kuroda, “Fabrication of Magnetic Mesostructured Nickel-Cobalt Alloys from Lyotropic Liquid Crystalline Media by Electroless Deposition”, J. Mater. Chem. 14 (2004) 2935-2940.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明