博碩士論文 943204005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.225.255.134
姓名 呂東霖(Tung-Lin Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以不同有機酸為碳源製備LiFePO4/C複合鋰離子電池陰極材料
(Carboxylic Acid-Assisted Solid-State Synthesis of LiFePO4/C Composites and Their Electrochemical Properties as Cathode Materials for Lithium-Ion Batteries)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究
★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磷酸亞鐵鋰(LiFePO4)因具結構穩定、原材料價格低廉、環境危害低、優良的安全性能及循環壽命等優點,近年來已成為熱門的鋰離子電池陰極材料;然而此材料不易量產、導電度及鋰離子擴散速率不佳,為目前所遭遇最大的瓶頸。在本研究中,利用高溫固態法之製程,分別加入不同結構之有機酸作為碳源,製備LiFePO4/C複合陰極材料,期能改善材料之導電度,進而提升電池性能。
本製程所製備之LiFePO4/C複合材料,經X光粉末繞射分析結果顯示皆為純相。各種有機酸添加量中,以添加60 wt.%丙二酸有最佳之電池性能,在充放電截止電壓為4.0~2.8 V及0.2 C的測試條下有150 mAh g-1左右之電容量,藉由總有機碳分析儀(TOC)進行碳含量之分析,最佳樣品碳含量為1.9 wt.%。另外,吾人亦使用拉曼光譜儀分析樣品中碳的成份及組成,並藉由特徵峰強度之比值(ID/IG)估算碳的石墨化程度多寡,添加各種有機酸碳源於60 wt.%添加量下之樣品,其ID/IG值介於0.907~0.938之間,顯示使用本製程能獲得含有較多石墨化碳比例之LiFePO4/C複合陰極材料。
在製備LiFePO4之過程中添加有機酸作碳源,可以抑制LiFePO4晶粒成長,同時達到縮小粒徑及提升電池性能之效果,並可經由FE-SEM觀察材料之表面型態可知,碳源添加量過少,則抑制晶粒成長之能力亦降低,但若添加量過多,則易造成材料團聚,同時發生因電活性物質之比例降低,致使電容量下降的情形;另外,為了解材料中碳之塗佈情形,吾人以TEM/SAED/EDS進行分析,其中半透明網狀之碳膜包覆於灰黑色LiFePO4材料表面,經SAED分析後發現樣品中同時具有結晶型及不定型結構之碳,並可與拉曼光譜之測試結果相互佐證;綜觀來說,添加各種有機酸碳源進行改質後,可提升材料導電度至10-4 S cm-1左右,但導電度亦受碳含量影響,適當之碳含量可於導電度、材料粒徑及電活性物質的比例中取得平衡,進而使材料能展現最佳之性能。
摘要(英) In order to enhance the capability of LiFePO4 materials, we attempted to coat carbon by incorporating various organic carboxylic acids as carbon sources. These acids include (a) mono-acid containing a ring structure, (b) straight-chain di-acids, and (c) tri-acids. The LiFePO4/C composite was synthesized using lithium carbonate, iron (II) oxalate dihydrate, and ammonium dihydrogen phosphate in a stoichiometric molar ratio (1.03:1:1) by a high temperature solid-state method.
The purity of LiFePO4 was confirmed by XRD analysis. Galvanostatic cycling and conductivity measurements were used to evaluate the material’s electrochemical performance. A galvanostatic charge-discharge study was carried out between 2.8 and 4.0 V. The best cell performance was delivered by the sample coated with 60 wt.% malonic acid. Its first-cycle discharge capacity was 149 mAhg-1 at a 0.2 C rate or 155 mAhg-1 at a 0.1 C rate. The presence of carbon in the composite was verified by total organic carbon (TOC) and Raman spectral analysis. The actual carbon content of LiFePO4 was 1.90 wt.% with the addition of 60 wt.% malonic acid. The LiFePO4/C samples sintered with 60 wt.% various carboxylic acids were measured by Raman spectral analysis. The intense broad bands at 1350 and 1580 cm-1 are assigned to the D and G bands of residual carbon in LiFePO4/C composites, respectively. The peak intensity (ID/IG) ratio of the synthesized powders is from 0.907 to 0.935. Carbon coatings LiFePO4 with low ID/IG ratios can be produced by incorporating carboxylic acid additives before the final sintering process.
The product morphology was analyzed by SEM and TEM/SAED/EDS. The particle size of the product decreased as the added amount of malonic acid increased. However, adding too much malonic acid caused a dramatic increase in particle growth. The EDS carbon map shows a uniform distribution of carbon in the sample on the surface of the composite particles. The TEM micrograph consists of two parts: a dark region and a grayish region which surrounds the dark region. It is interesting to know that both SAED patterns indicate that the materials of interest were in a crystalline phase. The TEM/EDS results unambiguously show that the particles in the dark region are LiFePO4 with a trace of carbon and those in the grayish region are carbon only. To produce LiFePO4 with carboxylic acid as a carbon source not only increases the overall conductivity (~ 10-4 Scm-1) of the material, but also prevents particle growth during the final sintering process.
關鍵字(中) ★ 磷酸亞鐵鋰
★ 碳
★ 鋰離子電池
★ 有機酸
★ 複合物
關鍵字(英) ★ Composite
★ Carboxylic acid
★ Carbon
★ LiFePO4
★ Li-ion Battery
論文目次 第一章 緒論 1
1.1 前言 1
1.2 鋰離子電池陰極材料簡介 2
1.3 研究目的及架構 5
第二章 文獻回顧 10
2.1 LiFePO4陰極材料介紹 10
2.2 LiFePO4陰極材料改質技術 14
2.2.1包覆或分散導電性碳改質LiFePO4陰極材料 14
2.2.2 添加不同金屬改質LiFePO4陰極材料 27
2.2.3摻雜不同金屬改質LiFePO4陰極材料 29
第三章 實驗方法 39
3.1 實驗儀器設備 39
3.2 實驗藥品器材 40
3.3 實驗步驟 41
3.3.1 以不同有機酸為碳源製備LiFePO4/C鋰離子電池陰極材料 41
3.3.2 以丙二酸作為碳源製備LiFe1-yMyPO4/C(M=Ti)鋰離子電池陰極材料 45
3.4 材料鑑定分析 49
3.4.1 X光繞射分析 49
3.4.2 掃描式電子顯微鏡分析 49
3.4.3 X光能量分散成份分析儀 49
3.4.4 穿透式電子顯微鏡 49
3.4.5 總有機碳分析儀 50
3.4.6 顯微拉曼光譜儀 50
3.4.7 微分掃描熱分析儀 50
3.5 材料電化學特性分析 51
3.5.1電池性能測試 51
3.5.2慢速循環伏安分析 53
第四章 結果與討論 55
4.1以丙二酸作為碳源合成LiFePO4/C陰極材料 55
4.1.1 以XRD分析材料結構 56
4.1.2 以丙二酸為碳源製備LixFePO4/C之電池性能評估 60
4.1.3 以丙酸為碳源製備LixFePO4/C之SEM/EDS分析 73
4.1.4 以丙二酸為碳源製備LixFePO4/C之TEM/EDS分析 77
4.2以水陽酸為碳源合成LixFePO4/C複合陰極材料 83
4.2.1以水陽酸為碳源製備LixFePO4/C之電池性能評估 83
4.2.2以水陽酸為碳源製備LixFePO4/C之SEM分析 91
4.2.3以水陽酸為碳源製備LixFePO4/C之TEM/EDS分析 93
4.3以其它有機酸為碳源合成LixFePO4/C複合陰極材料 95
4.3.1添加其他直鏈式有酸為碳源 95
4.3.2添加其他非直鏈式有酸為碳源 98
4.4其他相關鑑定與測試 100
4.4.1四點碳針導電度測試 100
4.4.2拉曼光譜測試 101
4.4.3微分掃描熱卡儀分析材料之熱穩定性 108
4.4.4慢速循環伏安分析 110
4.4.5動態光散射儀分析 113
第五章 結論 115
第六章 參考文獻 118
參考文獻 1. J.M. Tarascon and M. Armand, Nature, 414, 359 (2001).
2. A. Manthiram and J. Kim, Chem. Mater., 10, 2895 (1998).
3. J. Cho, T.J. Kim, Y.J. Kim, and B. Park, Angew. Chem. Int. Ed., 40, 3367 (2001).
4. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, Solid State Ionics, 83, 167 (1996).
5. Y. Takeda, K. Nakahara, M. Nishijima, N. Imanashi, O. Yamamoto, M.Takano, and R. Kanno, Mater. Res. Bull., 29, 659(1994).
6. A. K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, J. Electrochem. Soc., 144, 1188(1997).
7. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, J. Electrochem. Soc., 144, 1609(1997).
8. 費定國,“鋰離子電池在電動車市場之展望”,工業材料雜誌,229,141(2005).
9. K. F. Hsu, S. Y. Tsaya, and B. J. Hwang, J. Mater. Chem., 14, 2690(2004).
10. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, and J. Jamnik, J. Electrochem. Soc., 152, 607(2005).
11. Y. Hu, M. M. Doeff, R. Kostecki, and R. Finones, J. Electrochem. Soc., 151, A1279(2004).
12. M. M. Doeff, Y. Hu, F. McLarnon, and R. Kostecki, Electrochem. Solid State Lett., 6, A207(2003).
13. W. Li, J. Gao, J. Ying, C. Wan, and C. Jiang, J. Electrochem. Soc., 153, F194(2006).
14. R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, and J. Jamnik, J. Electrochem. Soc., 152, A858(2005).
15. S. Y. Chung, J. T. Bloking, and Y. M. Chiang, Nature, 732, 22(2002).
16. G. Li, H. Azuma, and M. Tohda, J. Electrochem. Soc., 149, A743(2002).
17. C. Ouyang, S. Shi, Z. Wang, X. Huang, and L. Chen, Phys. Rev. B , 69, 104303(2004).
18. 蕭楷模, 碩士論文, "溶液法製備橄欖石結構LiFePO4及其特性研究", 中華民國台灣(2004).
19. A. Yamada, S. C. Chung, and K. Hinokuma, J. Electrochem. Soc., 148, A224(2001).
20. M.R. Yang, W.H. Ke, and S.H. Wu, J. Power Sources, 146, 539(2005).
21. 廖國宏, 碩士論文, "磷酸鐵鋰陰極材料研究", 國立暨南國際大學, 中華民國台灣(2004).
22. P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, and M. Pasquali, J. Electrochem. Soc., 149,A886(2002).
23. M. armand, M. Gauthier, J.F. Magnan, and N. Ravet, World Patent: WO 02/27824, A1(1998).
24. http://www.phostechlithium.com/company/index.asp
25. H. Huang, S.C. Yin, and L. F. Nazarz, Electrochem. Solid-State Lett., 4, A170(2001).
26. G.X. Wang, L. Yang, S.L. Bewlay, Y. Chen, H.K. Liu, and J.H. Ahn, J. Power Sources, 146, 521(2005).
27. C. Lin and J. A. Ritter, Carbon, 35,1271(1997).
28. Z. Chen and J. R. Dahn, J. Electrochem. Soc., 149, A1184(2002).
29. K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, and H. G. Kim, Electrochem. Comm., 5, 839(2003).
30. K.F. Hsu, S.Y. Tsay, and B.J. Hwang, J. Power Sources, 146, 529(2005).
31. Z. Sun, X. Shi, X. Wang, and Y. Sun, Diamond Relat. Mater., 8, 1107(1999).
32. G. X. Wang, S. Bewlay, J. Yao, J. H. Ahn, S. X. Dou, and H. K. Liu, Electrochem. Solid-State Lett., 7, 503(2002).
33. S. L. Bewlay , K. Konstantinov , G. X. Wang , S. X. Dou, and H. K. Liu, Mater. Lett., 58, 1788(2004).
34. M. R. Yang, T. H. Teng, and S. H. Wu, J. Power Sources., 160, 307(2006).
35. S.S. Zhang, J.L. Allen, K. Xu, and T.R. Jow, J. Power Sources., 147, 234(2005).
36. A. Albane, M. Mathieu, W. Calin, G. Sylvain, and M. Christian, World Patent:WO 2004/001881, A2 (2003).
37. F. Croce, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, and B. Scrosati, Electrochem. Solid-State Lett., 5, 47(2002).
38. K.S. Parka, J.T. Sona, H.T. Chungb, S.J. Kimc, C.H. Leea, K.T. Kanga, and H.G. Kim, Solid State Communications, 129, 311(2004).
39. J. Pierre and P. Ramos, J. Power Sources, 54, 120(1995).
40. G. X. Wang, S. Bewlay, S. A. Needham, H. K. Liu, R. S. Liu, V. A. Drozd, J. F. Lee, and J. M. Chen, J. Electrochem. Soc., 153, A25(2006).
41. A. Yamada and S.C. Chung, J. Electrochem. Soc., 148, 960(2001).
42. M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, and R. Kanno, J. Electrochem. Soc., 151, A1352(2004).
43. S.H. Wu, K.M. Hsiao, and W.R. Liu, J. Power Sources., 146, 550(2005).
44. C. Ouyang, S. Shi, Z. Wang, X. Huang, and L. Chen, Phys. Rev. B, 69, 104303(2004).
45. K. Amine, H. Yasuda, and M. Yamachi, Electrochem. Solid-State Lett., 3, 178(2000).
46. J. M. Loris, C. P. Vicente, and J. L. Tirado, Electrochem. Solid-State Lett., 5, A234(2002).
47. M. Takahashi, S. Tobishima, K. Takei, and Y.Sakurai, J. Power Sources, 97-98, 508(2001).
48. S. Franger, F. Le Cras, C. Bourbon, and H. Rouault, J. Power Sources, 119-121, 252(2003).
49. S. J. Kwon, C. W. Kim, W. T. Jeong, and K. S. Lee, J. Power Sources, 137, 93(2004).
50. C. H. Mi, X. B. Zhao, G. S. Cao, and J. P. Tu, J. Electrochem. Soc., 152, A483(2005).
51. S.T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, and N. Kumagai, Electrochimica Acta, 49, 4213(2004).
52. P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, and M. Pasquali, Electrochimica Acta, 48, 4205(2003).
53. C. H. Mi, X. G. Zhang, X. B. Zhao, and H. L. Li, J. Alloys Compd , 424, 327(2006).
54. K. Konstantinov, S. Bewlay, G.X. Wang, M. Lindsay, J.Z. Wang, H.K. Liu, S.X. Dou, and J. H. Ahn, Electrochimica Acta, 50, 421(2004).
55. N. Iltchev, Y. Chen, S. Okada, and J. Yamaki, J. Power Sources, 119-121, 749(2003).
56. H.T. Chung, S.K. Jang, H. W. Ryu, and K.B. Shim, Solid State Comm.,131, 549(2003).
57. T. Qu, Y. W. Tian, Y. Ding, and Y. C. Zhai, J. Material and Metallurgy, 4, 36(2005).
58. X. Liao, Z. Ma, L. Wang, X. Zhang, Y. Jiang, and Y. Hea, Electrochem. Solid State Lett., 7, A522(2004).
59. L. J. van der Pauw, Phil. Res. Rep., 13,1 (1958).
60. M. I. Current and M.J. Market, Ion Implantation: Science and Technology (J.F. Ziegler, ed.), Academic Press, Orlando, FL, 487 (1984).
61. C. H. Mi, X. G. Zhang, X.B. Zhao, and H. L. Li, J. Alloys Compd., 424, 327(2006).
62. A. Ait Salah, A. Mauger, K. Zaghib, J. B. Goodenough, N. Ravet, M. Gauthier, F. Gendron, and C. M. Julien, J. Electrochem. Soc., 153, A1692(2006).
63. H. Liu, L. J. Fu, H. P. Zhang, J. Gao, C. Li, Y. P. Wu, and H. Q. Wu, Electrochem. Solid-State Lett., 9, 529(2006).
64. J. R. Dahn, J. Jiang, L. M. Moshurchak, M. D. Fleischauer, C. Buhrmester, and L. J. Krausec, J. Electrochem. Soc., 152, A1283(2005).
65. L. M. Moshurchak, C. Buhrmester, and J. R. Dahn, J. Electrochem. Soc., 152, A1279(2005).
66. 潘善鵬,翁漢甫“動態光散射儀於奈米粉體粒徑之量測不確定度分析”,機械工業雜誌,288,94(2007).
67. 徐文祥, 碩士論文, "鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究",國立中央大學, 中華民國台灣(2006).
68. 呂承璋, 碩士論文, "LixNi1-xCoyO2及LiM0.5-yM’yMn1.5O4之合成與電池性能", 國立中央大學, 中華民國台灣(2002).
指導教授 費定國(Ting-Kuo Fey) 審核日期 2007-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明