博碩士論文 943204029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.12.155.148
姓名 安明祥(Ming-Shian An)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 吸附性高自由體積粉粒之製備與應用
(The process and application of high free volume powder with the ability of adsorption)
相關論文
★ PU橡膠血液相容性之探討★ PU發泡體的結構與性質
★ POLY IP發泡體結構與性質之探討★ 非極性式poly-ip based PU軟質段末端改質的影響
★ 高韌性環氧樹脂底膠之開發★ 水性PU之流變性質研究
★ 完全相分離PU之完整形態研究★ 含矽膠PU之合成與血液相容性研究
★ 奈米級嵌段式PU之動態機械性質 與微結構型態研究★ Hydroxyl Terminated Polyisoprene(HTIP)陰離子型水性PU合成與性質研究
★ 陰離子型水性PU/有機蒙特納土奈米複合材料之製備與分析★ 非極性式poly-ip based PU 之軟質段末端改質對形態的影響
★ 硬質鏈段不規則性對PU奈米形態之影響(II)★ 苦楝油對於水性PU膨潤效應的性質研究
★ 硬質鏈段不規則性對PU奈米形態之影響★ 尼龍表面親疏水性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗目的在於製造高自由體積之水性PU粉末。傳統PU結構由高分子軟質段的多元醇與單體硬質段異氰酸鹽構成,鋪成膜後彈性與熱性質皆非常優異。水性PU則是在環保意識抬頭之後的產品,減少有機溶劑的使用。本研究主題化合物有兩種,第一種為水性PU,Chen[11]等人發現,長硬質鏈段的水性PU,由於離子基會聚集,導致鏈段之間會出現孔隙,推測其孔隙可以吸附氫氣、氧氣或是二氧化碳。因考量到吸附性質需求孔隙要大,合成時將結構中的高分子軟質段以三聚氫胺(Melamine)取代,合成出全硬段的高分子,以增加其孔隙。並由於Melamine是三官能基,產物為交聯物,孔隙可以更為增加。使用Melamine的另外一個因素是由於Melamine有六個氮原子,與氫原子產生氫鍵,把氫氣留在化合物表面,以增加吸附能力。本研究隨著離子基(DMPA)含量的變化,觀察該材料的熱性質與吸附氣體能力。第二種化合物是三聚氰胺甲醛高分子(Melamine-Formaldehyde polymer),也由於Melamine為三官能基,Formaldehyde為雙官能基,產生交聯,藉由其中的孔隙與Melamine上的氮原子形成氫鍵吸附氣體。本研究藉由改變Melamine與Formaldehyde的mole比,探討各組成的熱性質與吸附氣體能力。
摘要(英) The aim of this experiment is to produce powder which is composed by waterborne polyurethane of high free volume. Traditional PU structure consists of polyol of macromolecular soft segment and diisocyanate, thermal property and elasticity will become excellent after paved as membrane. Waterborne PU can be used to reduce the use of organic solvent, especially environment protection increasingly draws much attention.
This research focuses on two subject chemicals. The first one is Waterborne polyurethane. It was found by Chen[11] etc that Waterborne polyurethane of long hard segments produces holes among segments because ionic aggregates. As a result, it was inferred to be able to absorb hydrogen, oxygen and carbondioxid. Considering that better absorption ability needs larger holes, macromolecule of whole hard segments is synthesized to increase holes by substituting Melamine for soft segment of macromolecule. Because Melamine is a tri-functional group and it makes the WPU crosslinking, holes can increase more. another reason of using Melamin is that it owns six nitrogen atoms, able to form Hydrogen bonds to attach much more Hydrogen atoms on surface of chemicals.
Waterborne polyurethane observes heat property and hydrogen, oxygen, and carbondioxid absorption capabilities with change on the containing of ionic group(DMPA).
The second chemicals is Melamine-Formaldehyde polymer. Melamine of tri-functional group and Formaldehyde of di-functional group can crosslink to produce holes. These holes and Nitrogen atoms can form hydrogen bonds to absorb the desired gas. This research also study the heat property and gas absorption capabilities, of different composition by changing mole ratios of Melamine and Formaldehyde.
關鍵字(中) ★ 三聚氰胺甲醛
★ 二氧化碳
★ 氧氣
★ 氫氣
★ 吸附
★ 水性聚氨基甲酸酯
關鍵字(英) ★ oxygene
★ hydrogen
★ melamine-formaldehyde
★ waterborne polyurethane
★ adsorption
★ carbondioxid
論文目次 目錄
摘要-----------------------I
Abstract-----------------II
致謝----------------------III
目錄----------------------------------------IV
圖目錄--------------------------------------IX
表目錄--------------------------------------XII
第一章、序論----------------------------------1
1-1 前言--------------------------------------------------1
1-2 研究與動機--------------------------------------------1
第二章、文獻回顧------------------------------3
2-1 水性PU 的介紹-----------------------------------------3
2-1-1 PU 的結構------------------------------------------3
2-1-2 水性PU 的分類-------------------------------------4
2-1-3 親水基的導入--------------------------------------4
2-1-3-1 陰離子型--------------------------------------4
2-1-3-2 陽離子型--------------------------------------5
2-1-3-3 非離子型--------------------------------------6
2-1-3-4 陰陽離子共存型--------------------------------6
2-1-4 PU 離子體(PU ionomers)---------------------------7
2-1-5 PU 水性化的製程------------------------------------7
2-1-5-1 Solution process-------------------------------7
2-1-5-2 Prepolymer mixing process----------------------8
2-1-5-3 Hot melt process-------------------------------9
2-1-5-4 Ketimine(and Ketazine)process------------------10
2-2 水性PU 的物理性質------------------------------------11
2-2-1 PU 分散液的水分散機制----------------------------11
2-2-2 膠體粒子理論------------------------------------12
2-2-2-1 膠體的穩定性--------------------------------13
2-2-2-2 電雙層--------------------------------------14
2-2-3 水性PU 的成膜性質-------------------------------15
2-2-4 水性PU rheology---------------------------------18
2-2-4-1 黏度的定義----------------------------------18
2-2-4-2 流體的分類----------------------------------19
2-2-4-3 水性PU rheology-----------------------------20
2-2-5 水性PU 的熱性質---------------------------------20
2-2-5-1 相轉變(phase transition)--------------------20
2-2-5-2 玻璃化轉變(glass transition)----------------21
2-2-5-3 玻璃態(glass state)-------------------------22
2-2-5-4 高彈態(rubbery state)-----------------------23
2-2-5-5 黏流態(viscous state)-----------------------23
2-2-5-6 黏流溫度(viscous flow temperature)-----------23
2-2-5-7 熔點(melt point)Tm-------------------------24
2-3 三聚氰胺甲醛聚合物-------------------------24
2.4 吸附理論---------------------------------------27
2-4-1 吸附理論---------------------------------------27
2-4-1-1 吸附平衡---------------------------------------27
2-4-1-2 Langmuir等溫吸附---------------------------------------28
2-4-1-3 BET等溫吸附---------------------------------------30
2-4-1-4 Isothermal等溫曲線---------------------------------------32
2-4-1-5吸附機構---------------------------------------36
第三章 實驗部份---------------------------------------39
3-1 化學藥品---------------------------------------39
3-2 儀器設備---------------------------------------39
3.3 實驗步驟---------------------------------------40
3-3-1化合物合成---------------------------------------40
3-3-1-1水性PU合成----------------------40
3-3-1-2 三聚氰胺甲醛聚合物合成--------------------------------41
3-3-2 NCO 官能基濃度滴定(ASTM ASTM-D1368) ------------41
3-3-3 氣體吸附實驗方法---------------------------------------42
3-3-3-1 乾冰溫度下氫氣與氧氣吸附實驗-----------------------43
3-3-3-2 液態氮溫度下氫氣吸附實驗------------------------------43
3-4 分析方法---------------------------------------44
3-4-1 FTIR---------------------------------------44
3-4-2 TGA---------------------------------------44
3-4-3 黏度的量測---------------------------------------44
3-4-4 DSC---------------------------------------45
3-4-5 氣體吸附---------------------------------------45
第四章 結果與討論--------------------------------46
4-1 討論的範圍---------------------------------------46
4-1-1 水性PU---------------------------------------46
4-1-2 三聚氰胺甲醛聚合物---------------------------------------46
4-2 FTIR鑑定---------------------------------------46
4-2-1 水性PU---------------------------------------47
4-2-2 三聚氰胺甲醛聚合物-------------------------------49
4-3 TGA分析---------------------------------------53
4-3-1 水性PU---------------------------------------53
4-3-2 三聚氰胺甲醛聚合物---------------------------------------53
4-4 DSC分析---------------------------------------54
4-4-1 水性PU---------------------------------------55
4-4-2 三聚氰胺甲醛聚合物DSC----------------------------------55
4-5 氫氣於乾冰溫度下吸附---------------------------56
4-6 氧氣於乾冰溫度下吸附---------------------------61
4-7 氫氣於液態氮溫度下吸附-------------------------66
4-7-1 小體積下測試---------------------------------------66
4-7-2 大體積下測試---------------------------------------68
4-8 二氧化碳於-70℃下吸附--------------------------68
4-9 黏度量測---------------------------------------73
第五章 結論---------------------------------------75
Further research---------------------------------------76
文獻參考---------------------------------------77
參考文獻 1. D. Dieterich, W. Keberle and H. Witt , Angew Chem. Int. Edn. ,
1970 , 9 , 40
2. D.J. Hourston , G. Williams , R. Satguru , J.D. Padget , and D. Pears , J. Appl. Polym. Sci. , 1997 , 66 , 2035~2042
3. B.K. Kim and J.C. Lee, J. Polym. Sci A: Polym. Chemistry , 1996 , 34 ,1095~1104
4. X. Wei and X. Yu , J. Appl. Polym. Sci Part B :Polym. Phys. , 1997 ,
35 , 225~232
5. R.D. Lundberg , "Encyclopedia of Chemical Technology" , 3rd ed. ,
1984 , Supplement Volume , 546
6. R.A. Register , X-hai Yu and S.L. Cooper , Polym. Bull ,1989 , 22 ,
565
7. G.C. Marx , D.F. Caulfield and S.L. Cooper , Macromolecules , 1973 ,6 , 344
8. C.G. Bazuin and A. Eisenberg , Ind. Eng. Chem. Prod. Res. Dev. ,
1981 , 20 , 271
9. A. Eisenberg , B.Hard and R.B. More , Macromolecules , 1990 , 23 ,
4098
10. C.Z. Yang , T.G. Grasel , J.L. Bell , R.A. Register and S. L. Cooper , J. Polym. Sci.:Polym.Phys. , 1991 , 29 , 581
11. T.K. Chen, S.M. Huang, J. Appl. Polym. Sci., 2007 , 105, 3794–3801
12. M. Terrones, H. terrones, M.Hirscher,…, Chemical Physics Letters, 2005, 403, 363-366
13. R. Satgurau , J. McMahon , J. C. Padget and R. C. Coogan , Congress of the Federation of Scandinavian Paint & Varnish Technologists ,
Copenhagen , 1993
14. R. Buscall , J.W. Goodwin , M.W. Hawkins and R.H. Ottewill , J.
Chem. Soc. ,1982 , 78 , 2873~2899
15. J. Mewis , W.J. Frith , T.A. Strivens and W.B. Russell , AIChEJ.35 ,1989 , 415~422
16. T.K. Kim and B.K. Kim , Colloid Polym. Sci. , 1991 , 269 , 885~894
17. Y.M. Lee, J.C. Kim , and B.K. Kim , Polymer , 1994 , 35 , 10
18. S.Y. Lee, J.S. Lee , and B. K. Kim , Polymer International , 1997,
42 ,67~76
19. C.S.P. Sung, T.W. Smith, & N.H. Sung , Macromolecules ,1980 ,
13 , 117
20. C.B. Wang, & S.L. Cooper, Macromolecules , 1983 , 16 , 775
21. S. Abouzahr, & Wilkes , and G.L. , J. Appl. Polym. Polym. Sci. ,
1984 , 29 , 1695
22. S.H. Son, H.J. Lee, J.H. Kim, Colloids and Surfaces A:
Physicochem.Eng.Aspects , 1998 , 133 , 295~301
23. B.K. Kim and T.K. Kim , J. Appl. Polym. Sci. , 1991 , 43 , 393~398
24. J.W. Rosthaus and K. Nachtkamp , Advances in Urethane Science and Technology , 1987 , 10 ,121
25. G. Oertel , Polyurethane Handbook , Hanser , N.Y. , 1985
26. S.L. Hsu , H. X. Xiao , H.H. Szmant , and K.C. Frisch , J. Appl. Polym.Sci. , 1984 , 29 , 2467
27. Y.M. Lee , J.C. Lee and B.K. Kim , Polymer , 1994 , 35 , 1095
28. V.O.W. Srichatrapimuk, and S.L. Cooper, J. Macromol. Sci-Phys. ,
1974 , 9 , 447
29. G.A. Senich and W. J. MacNight , Macromolecules , 1980 , 13 , 106
30. D. Dieterich , Prog. Org. Coatings , 1981 , 9 , 281
31. C. Hepburn, Elsevier Applied Science , Condon , 1991
32. F.M.B. Coutinho and M.C. Delpech , Polymer testing , 1996 , 15 ,
103~113
33. W.C. Chan and S.A. Chen , Polymer, 1988 , 29 , 1995
34. R.J. Hunter , Rose G , Colloid and Polymer Science , 1981 , 259 , 587
35. L.J. Calbo, Proceeding of the 13th Annual Water-Borne and Higher
solids Coatings Symposium , 1986 , p.356
36. Y. Chen and Y.L. Chen , J. Applied Polymer Science ,
1992 ,46 , 435~443
37. T.L. Smith , Polym. Eng. Sci. , 1977 , 21 , 3323
38. T.L. Smith , J. Polym. Sci. , Polym.Phys-Ed , 1974 , 12 , 1825
39. W.B. Russell , D.A. Saville and W.R. Schowalter , Colloidal
Dispersions , Cambridge University , Cambridge , 1989
40. B. Panella, L. Kossykhb, Synthetic metals , 2005
41. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng M. S. Dresselhaus, 1999
42. J. Garche, G. Wolf, …J. Power Sources 1999 84 221–224
43. B. Panella, M. Hirscher, S. Roth, Carbon, 2005, 43 2209–2214
44. Y. Hu, L. Ye, X. Zhao, Polymer, 2006, 47, 2649–2659
45.李典倫,苦楝油對於水性PU 膨潤效應的性質研究,國立中央大學,2006
46. 鄭詔仁,水性PU 之流變性質研究,國立中央大學,2003
47. 林柏丞,化學活化法製備活性碳纖維,逢甲大學,2006
指導教授 陳登科(Teng-Ko Chen) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明