博碩士論文 943204037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.137.185.180
姓名 劉恭益(Kung-yi Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化矽-氧化鋅複合擔體銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究
(Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO2-ZnO catalyst)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以銅為觸媒,氧化矽(SiO2)為主要擔體,採含浸法製備成複合擔體,複合物包括了:ZnO、ZrO2及Al2O3,目的在進行表面改質。接著利用沉澱固著法製備成複合擔體銅觸媒,並且進行氧化性甲醇蒸氣重組反應(oxidative steam reforming reaction,CH3OH + 0.5H2O+0.25O2 →2.5H2 + CO2 )產製氫氣的程序,此反應具有不錯的氫氣產生速率,以及相當低的CO選擇率,可避免CO濃度太高以致毒化燃料電池中的鉑電極。檢測儀器包括:感應耦合電漿質譜分析儀(ICP-MS)、熱重分析儀(TGA)、X射線繞射儀(XRD)、掃描式電子顯微鏡(SEM-EDS)、X射線光電子分析儀(XPS)、程式升溫還原(TPR)、N2O分解吸附(dissociative adsorption of nitrous oxide)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,藉以評估觸媒應用於質子交換膜燃料電池的可行性。
由XRD的結果看出Cu/SiO2-Al2O3觸媒的銅繞射峰最大,顯示Cu/SiO2-Al2O3觸媒的銅晶粒較大。由TPR的圖譜看出,Cu/SiO2-Al2O3觸媒的還原溫度最高,其次是Cu/SiO2-ZrO2,而Cu/SiO2-ZnO觸媒還原溫度最低,顯示添加Zn做為複合擔體可增加觸媒的還原性。由N2O分解吸附的結果顯示,Si/Zn原子比在8/2時有最佳的分散度及最小的粒徑,但是當Zn的量再增加至7/3時,銅晶粒反而變大。以沈澱固著法製備的Cu/SiO2-ZnO觸媒,由XPS的結果得知,在氧化性甲醇蒸氣重組反應,銅觸媒中Cu0最具有活性,優於氧化態的銅。由化學反應的活性測試發現,觸媒的活性與擔體複合物的選擇有關,其中以Cu/SiO2-ZnO的觸媒活性最佳,並且測得當Si/Zn的原子比為8/2的反應性最好。另外進料中氧與甲醇還有水與甲醇的比例也是影響反應的重要因素,當O2/CH3OH=0.3與H2O/CH3OH=1時,氫氣的產生速率最佳,一氧化碳的選擇率也較低。當反應溫度升高,一氧化碳的選擇率也隨之增高,會毒化燃料電池中的鉑電極,由結果得知最佳的反應溫度為250℃,具有高氫氣產生速率以及甲醇轉化率,一氧化碳的選擇率也很低。未來期望此銅觸媒能應用於燃料電池中,以產製高純度氫氣,作為燃料電池中的氫氣來源。
摘要(英) Selective production of hydrogen by oxidative steam reforming of methanol (CH3OH + 0.5H2O + 0.25O2-->2.5H2 + CO2) was investigated over Cu/SiO2-MOx (M=Zn, Zr and Al) catalysts. The catalyst preparation involves two steps. In the first step, the binary supports (SiO2-MOx) were prepared by incipient wetness impregnation method. In the second step, copper was supported on the binary support by deposition-precipitation technique. The catalysts were calcined at 673 K and finally reduced at 623 K. The catalysts were characterized by TGA, XRD, TPR, N2O titration, SEM-EDS and XPS analyses. The XRD analysis confirms the desired phase purity of ZnO, ZrO2 and Al2O3 samples and presence of metallic copper in all these catalysts. The TPR analysis illustrates that the reduction temperature for copper is higher in Cu/SiO2-Al2O3 catalyst than in Cu/SiO2-ZnO catalyst, which suggests that the presence of Zn to binary support could improve the catalytic reductive property. The studies on dissociate adsorption of nitrous oxide at various Si/Zn atomic ratios reveal that the catalyst with Si/Zn atomic ratio 8/2 exhibited better dispersion with smaller copper particle compared to the catalyst with Si/Zn atomic ratio 7/3. XPS analyses demonstrate that metallic copper in the catalysts are oxidized to Cu2O and CuO after catalytic tests. The catalytic activity of the catalysts for oxidative steam reforming of methanol to produce hydrogen depends strongly on the nature of the binary support, particle size and surface area of metallic copper. The activity of the copper catalysts supported on different binary supports shows that the Cu/SiO2-ZnO catalyst exhibited higher activity towards hydrogen formation compared to Cu/SiO2-ZrO2 and Cu/SiO2-Al2O3 catalysts. Since Cu/SiO2-ZnO catalyst showed higher catalytic activity for hydrogen formation, the activity of Cu/SiO2-ZnO catalyst were studied in detail at different Si/Zn atomic ratio, calcination temperature, O2/CH3OH molar ratio, H2O/CH3OH molar ratio and reaction temperature. The catalyst with Si/Zn atomic ratio 8/2 shows higher activity for methanol conversion and hydrogen production rate. The higher activity of the catalyst with Si/Zn atomic ratio 8/2 has been explained in terms of presence of highly dispersed small copper particle. The appropriate molar ratios of O2/CH3OH and H2O/CH3OH for the reaction are found to be 0.3 and 1, respectively. The optimum calcination temperature for OSRM is 673 K. The catalytic performance at various reaction temperatures shows that with increasing reaction temperatures from 473 to 573 K, methanol conversion increases from 15 to 95 % and hydrogen production rate increases from 0 to 269 mmol kg-1 s-1 and CO selectivity increases from 0.5 to 6.7 %. When the CO exceeds few ppm deactivates the Pt electrode, so the appropriate reaction temperature for OSRM is envisaged as 523 K, at which the methanol conversion is 95 % and hydrogen production rate is 287 mmol kg-1 s-1 and CO selectivity is 2.1 %. The present study proves that the Cu/SiO2-ZnO catalysts are active for OSRM that produce high hydrogen content with low carbon monoxide. Therefore, OSRM reaction over Cu/SiO2-ZnO catalyst to produce hydrogen for the application of fuel cells for electric-powered vehicles would be expected.
關鍵字(中) ★ 銅觸媒
★ 氫氣
★ 複合擔體
關鍵字(英) ★ hydrogen production
★ catalyst
★ OSRM
論文目次 目錄 I
圖目錄 V
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 燃料電池原理 2
1.3 燃料電池的種類 4
1.4 甲醇製氫 5
1.5 擔體銅觸媒 8
1.6 研究內容與論文架構 9
第二章 文 獻 回 顧 11
2.1銅觸媒的發展 11
2.2沈澱固著法製備擔載銅觸媒 12
2.3煅燒與還原程序 14
2.3-1煅燒程序 14
2.3-2還原程序 15
2.4 擔體效應 16
2.5銅金屬表面積的測定 17
2.6 銅的活性位置 19
2.7 氧化性甲醇蒸氣重組反應 20
第三章 實驗方法與裝置 25
3.1 複合擔體的製備 25
3.2 擔載銅觸媒的製備 25
3.3 擔體銅觸媒的鑑定分析 28
3.3-1 感應耦合電漿質譜儀(ICP-MS)分析 28
3.3-2 熱重分析(TGA) 29
3.3-3 X射線繞射分析(XRD) 31
3.3-4 程式升溫還原(TPR) 31
3.3-5 銅金屬表面積的量測 35
3.3-6 掃描式電子顯微鏡-能量分析光譜儀(SEM-EDS)分析 38
3.3-7 X射線光電子分析(XPS) 39
3.4 觸媒活性測試—氧化性甲醇蒸氣重組產製氫氣反應 42
3.5 實驗流程與操作變數 45
3.6 數據的計算與實例 47
3.6-1 銅觸媒理論載量的定義與計算 47
3.6-2 轉化率的定義與計算 48
3.6-3 選擇率的定義與計算 53
3.6-4 產生速率的定義與計算 54
3.7 藥品、氣體及儀器設備 57
3.7-1 藥品 57
3.7-2 氣體 58
3.7-3 儀器設備 58
第四章 結果與討論 60
4.1 物性分析 60
4.1-1 複合擔體煅燒條件的選擇 60
4.1-2 觸媒煅燒條件的選擇 62
4.1-3 程式升溫還原(TPR)分析結果 64
4.1-4 觸媒銅金屬表面積測定 70
4.1-5 X射線繞射分析(XRD) 74
4.1-6掃描式電子顯微鏡-能量分析光譜儀(SEM-EDS)分析 80
4.1-7 X射線光電子分析(XPS) 82
4.2 化性分析 85
4.2-1 擔體對觸媒活性的影響 85
4.2-2 擔體Si/Zn原子比對觸媒活性的影響 90
4.2-3 煅燒溫度對觸媒活性的影響 94
4.2-4 進料比對觸媒活性的影響 98
4.2-4-1 不同O2/CH3OH莫耳比的影響 99
4.2-4-2 不同H2O/CH3OH莫耳比的影響 103
4.2-5 反應溫度對觸媒活性的影響 110
4.2-6 Cu/SiO2-ZnO觸媒與文獻上常用的觸媒在氧化性甲醇蒸氣重組反應上之分析結果比較 113
第五章 結論 116
參考文獻 119
參考文獻 Agrell, J., Hasselbo, K., Jansson, K., Jaras, S.G., Boutonnet, M., “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Appl. Catal.A: Gen. 211 (2001)239.
Agrell, J., Lindström, B., Pettersson, L.J., Jaras, S.G., “Catalytic hydrogen generation from methanol”, Catalysis V16 (2002) 67.
Agrell, J., Boutonnet, M., Melian-Cabrera, I., Fierro, J.L.G., Production of hydrogen from methanol over binary Cu/ZnO catalysts”, Appl.Catal. A:Gen.253(2003) 201.
Agrell, J., Birgersson, H., Boutonnet, M., Melian-Cabrera, I., Navarro, R.M., Fierro, J.L.G., Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219(2003)389.
Alejo,L., Lago, R., Pena, M.A., Fierro, J.L.G., “Partial oxidation of methanol to produce hydrogen over Cu---Zn-based catalysts”, Appl.Catal. A:Gen. 162 (1997) 281.
Batyrev, E.D., Van den Heuvel, J.C., Beckers, J., Jansen, W.P.A., Castricum, H.L.,”The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis”, J. Catal. 229(2005)136.
Balkenende, A.R., Van Kooten, W.E.J., Pieters, A.R., Lamers, M., Janssen, F.J.J.G., Geus, J.W., “XPS surface characterization of a Cu/SiO2 catalyst oxidized by NO or O2”, Appl.Surf.Sci.,68(1993)439.
Bond, G.C., Namijo, S.N., Wakeman, J.S., “Thermal analysis of catalyst precursors Part 2. Influence of support and metal precursor on the reducibility of copper catalysts”, J.Mol.Catal.64(1991)305.
Bond, G.C., Namijo, S.N., “An improved procedure for estimating the surface area of supported copper catalysts”, J.Catal.118(1989)507.
Breen, J.P., Ross, J.R.H., “Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts”,Catal. Today 51(1999)521.
Breen, J.P., Meunier, F.C., Ross, J.R.H., “Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst”, Chem. Commun. (1999) 2247.
Burch, R., Chappell, R.J., “Support and additive effects in the synthesis of methanol over copper catalysts”, Appl.Catal.45 (1988)131.
Carter, J.L., Cusumano, J.A.,Sinfelt, J.H., J.Phy.Chem.,70(1966)2257.
Chang, H.F., Saleque, M.A., Hsu, W.S., Lin, W., “Characterization and dehydrogenation activity of Cu/Al2O3 catalysts prepared by electroless plating technique”, J.Mol.Catal.A 109(1996) 249.
Chen., H.W., White, J.M., Ekerdt, J.G., “Electronic effect of supports on copper catalysts”, J.Catal.99(1986)293.
Choi, Y., Futagami, K., Fujitani, T., Nakamura, J., “The role of ZnO in Cu/ZnO methanol synthesis-morphology effect or active site model?”
,Appl. Catal. A 208(2001)163.
Costantino, U., Marmottini,F., Sisani, M., Montanari, T., Ramis, G., Busca, G., Turco, M., Bagnasco, M., “Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol” , Solid State Ionics 176(2005)39.
De Jong, K.P., Geus,J.W., Joziasse, J., “An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide”, J.Catal.,65(1980)437.
Dvo ák, B., Pa ek, J., “Determination of the specific copper surface area by chromatographic technique”, J.Catal.18(1970)108.
Edwards, N., Ellis, S.R., Frost, J.C., Golunski, S.E., Keulen, A.N.J.V., Lindewald, N.G., Reinkingh, J.G., “On-board hydrogen generation for transport applications: the HotSpot™ methanol processor”, J. Power Sources 71 (1998) 123.
Emonts, B., Menze, R., Riedel, E., “Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer”, J. Power Sources 61 (1996) 143.
Eswaramoorthi, I., Sundaramurthy, V., Dalai, A.K., ”Partial oxidation of methanol for methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts”, Appl. Catal. A 313(2006)22.
Evans, J.W., Winwright, M.S., Bridgewater, A.J., Young, D.J., “On the determination of copper surface area by reaction with nitrous oxide”Appl, Catal., 7(1983)75.
Feirro, G., Jacono, M.L., Inversi, M., Porta, P., Cioci, F., Lavecchia, R.,”Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction”.Appl. Catal. A 137(1996)327.
Fujitani, T., Matsuda, T., Kushida, Y., Ogihara, S., Uchijima, T., Nakamura, J., “Creation of the active site for methanol synthesis on a Cu/SiO2 catalyst”, Catal. Lett. 49(1997)175.
Fujita, S.,Usui, M., Ito, H., Takezawa, N., “Mechanisms of methanol synthesis from carbon dioxide and from carbon monoxide at atmospheric pressure over Cu/ZnO”, J.Catal.157(1995)403.
Gil, A., Diaz,A. Gandia, L.M., Montes, M., “Influence of the preparation method and the nature of the support on the stability of nickel catalysts” , Appl.Catal.A 109(1944)167.
Guerreiro, E.D., Gorriz, O.F., Rivarola, J.B., Arrua, L.A., “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation”, Appl.Catal. A: Gen. 165(1997)259.
Hohlein, B.J., Bogild, H., Brockerhoff, P., Colsman, G., Emonts, B., Menzer, R., Riedel, E., “Hydrogen from methanol for fuel-cells in mobile systems-development of a compact reformer”, Journal of Power Sources. 61 (1996)143.
Hoogers. G, Fuel cell technology handbook, (2002).
Horny, C., Renken, A., Kiwi-Minsker, L., “Compact string reactor for autothermal hydrogen production”, Catal.Today 120 (2007)45.
Huang, T.J., Wang, S.W., “Hydrogen production via partial oxidation of methanol over copper-zinc catalysts”, Appl.Catal.24(1986)287.
Huang, T.J., Wang, S.W., “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”,Appl.Catal.40(1988)43.
Kudelski, A., Pettinger, B., “Raman study on methanol partial oxidation and oxidative steam reforming over copper”, Surf.Sci.566(2004)1007.
Lenarda, M., Moretti, E., Storaro, L., Patrono, P., Pinzari, F., Castellon ,E. R., Lopez,A.J., Busca ,G., Finocchio, E., Montanari,T., Frattini,R., “Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming”, Appl. Catal.A: Gen.312(2006)220.
Lindström, B., Agrell, J., Pattersson, L.J.,”Combined methanol reforming for hydrogen generation over monolithic catalysts”, Chem. Eng. J. 93(2033)91.
Lindström, B.,Pettersson L.J.”hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”, Int. J. Hydrogen Energy 26(2001)923.
Lindström, B., Pettersson, L.J., “Development of a methanol fuelled reformer for fuel cell applications”, J.Power Sources 118(2003)71.
Lindström, B., Pettersson, L.J., Govind Menon, P., “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles”, Appl. Catal. A: Gen. 234 (2002) 111
Liu, S., Takahashi, K., Ayabe, M., “Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading”, Catal. Today 87(2003)247
Liu, S., Takahashi,K., Ayabe,M.,Uematsu,K., “Hydrogen production by oxidative methanol reforming on Pd/ZnO”, Appl. Catal.A: Gen.283 (2005)125.
Liu, S., Takahashi,K., Fuchigami,K.,Uematsu,K., “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation”, Appl. Catal.A: Gen.299 (2006)58.
Luo, M.F., Mai He, P.F., Xie, Y.L., “In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation”, J. Mol. Catal. A : Chem. 239(2005)243.
Lwin, Y., Daud, W.R.W., Mohamad, A.B. Yaakob, Z., Int. J. Hydrogen Energy 25(2000)47.
Murcia-Mascaro´s ,S., Navarro, R.M., Go´mez-sainero, L., Costantino, U., Nocchetti, M., Fierro ,J.L.G., “Oxidation methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors”, J. Catal. 198 (2001) 338.
Mile, B.D.,Stirling, M.A.,Zammitt, Lovell,A.,Webb,M., ”The location of nickel oxide and nickel in silica-supported catalysts:Two forms of “NiO” and the assignment of temperature programmed reduction profiles”J. Catal.114 (1988) 217.
Narita, K., Takeyawa, N., Kobayashi, J., Toyoshima, I., “Adsorption of nitrous oxide on metallic copper catalysts”, React.Kinet. Catal. Lett. 19 (1982)91.
Nitta, Y., Suwata, O., Ikeda, Y., Okamoto, Y. , Imanaka, T., “Copper- zirconia catalysts for methanol synthesis from carbon dioxide: Effect of ZnO addition to Cu-ZrO2 catalysts ”Catal. Lett. 26 (1994) 345.
Oetjen, H.F., Schmidt, V.M., Stimming, U., Trila,F., “Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas”, J. Electrochem. Soc.143 (1996)3838.
Patel, S., Pant, K.K.,”Activity and stability enchancement of copper - alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol ”, J. Power Sources 159(2006)139.
Purnama, H., Girgsdies, F., Ressler, T., Schattka, J.H., Caruso, R.A., Schomäcker, R., Schlögl, R.,”Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol”, Catal. Lett. 94(2004)1.
Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H.H., “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction”, J.Mol.Catal.A: Chem. 162 (2000a) 275.
Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H.H., “Methanol reforming over CuO/ZnO under oxidizing conditions”, Stud. Surf.Sci. Catal. 130 (2000b) 3645.
Reitz, T.L., Lee, P.L., Czaplewski, K.F., Lang ,J.C., Popp, K.E., Kung, H.H., “Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction”, J. Catal. 199 (2001) 193.
Ruettinger, W., Ilinich, O., Farrauto, R.J., “A new generation of water gas shift catalysts for fuel cell applications ”, J.Power Sources 118 (2003) 61.
Richardson, J.T., Dubus, R.J., ”Crystallite size distributions of sintered nickel catalysts”J.Catal. 57(1979)417.
Robertson, S.D., McNicol, B.D. Baas, J.H., Kloet, S.C., Jenkins, J.W., Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction”, J. Catal., 37(1975)424.
Saito, M., Wu, J., Tomoda, K., Takahara, I., Murata, K., “Effect of ZnO contained in supported Cu-based on catalysts on their activities for several reactions”, Catal. Lett., 83(2002)1.
Service, R.F., “Hydrogen power: Bringing fuel cells down to earth”, Science 285, 682(1999).
Suzuki, K., Velu, S., Okazaki, M., Kapoor, M.P., Ohashi, F., Osaki, T., ”Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A Gen.213 (2001) 47.
Suzuki, K.,Velu, S., Osaki, T., “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells”, Chem. Commun. (1999) 2341.
Sengupta, G., Gupta, D.K., Kundu, M.L., Sen, S.P., “Effect of reduction conditions upon metal area in CuO-ZnO catalyst”, J.Catal. 67(1981)223.
Shan, W., Feng, Z., Li, Z., Zhang, J., Shen, W., Li, C., “Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods”, J.Catal.228(2004)206.
Shen, J.P., Song, C., “Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for full cells”, catal. Today 77(2002)89.
Taylor, H.S., Adv. Catal., 1 (1948)1.
Turco, M., Bagnasco, G., Costantino,U., Marmottini, F., Montanari , T., Ramis, G., Busca, G., “Production of hydrogen from oxidative steam reforming of methanol Ⅰ.Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor”, J.Catal. 228(2004a)43.
Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., Busca, G., “Production of hydrogen from oxidative steam reforming of methanol П.Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts”, J.Catal. 228(2004b)56.
Van Den Berg, M.W.E., Polarz, S., Tkachenko, O.P., Klementiev, K.V., Bandyopadhyay, M., Khodeir, L., Gies, H., Muhler, M., Grunert, W.,”Cu/ZnO aggregates in siliceous mesoporous matrices: Development of a new model methanol synthesis catalyst”, J. Catal.241(2006)446
Van den Oetelaar, L.C.A., Partridge,A., Staple, P.J.A.,Flipse, Brongersma, C.F.J., Brongersma, H.H., “A Surface science study of model catalysts. 2.Metal-support interactions in Cu/SiO2 model catalysts”, J. Phys. Chem. B 102(1998)9532.
Van Der Grift, C.J.G., Elberse, P.A., Mulder,A., Geus, J.W., “Preparation of silica-supported copper catalysts by means of deposition- precipitation”, Appl. Catal. 59 (1990a)275.
Van Der Grift, C.J.G., Mulder, A., Geus, J.W., “Characterization of silica-supported copper catalysts by means of temperature - programmed reduction”, Appl. Catal.60 (1990b) 181
Van Der Grift, C.J.G., Wielers, Mulder,A., Geus, J.W., “The reduction behaviour of silica-supported copper catalysts prepared by deposition - precipitation”, Thermochim. Acta, 171 (1990c) 95
Van Der Grift, C.J.G., Wielers, A.F.H., Joghi, B.P.J., Van Beijnum, J., De Boer, M., Versluijs-Helder, M., Geus, J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, J.Catal.131 (1991)178.
Van Dillen, A.J., Geus, G.W., Hermans, M.A.L.,Van der Meijden, J., “Proceedings, 6th international congress on catalysis, London, 1976” ,Chem. Soc., 677(1977)
Van Oosterwijck-Gastuche,M.C.,Gregoire,C., Mineral.Soc.Jpn.Spec., 196 (1971)
Velu, S., Suzuki, K., Osaki, T., “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”,Catal. Lett. 62(1999)159.
Velu, S., Suzuki, K., Osaki, T., Kapoor, M.P., Osaki, T., Ohashi, F., “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for selective production of hydrogen for fuel cells: catalyst characterization and performance evaluation”, J. Catal. 194(2000)373.
Wang, Z., Liu, Q., Yu, J.,Wu, T., Wang, G., “Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods”, Appl.Catal.A:Gen.239 (2003a)87
Wang, Z.,Wang, W., Lu, G., “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, Int. J. Hydrogen Energy 28(2003b)151.
Wigley, T.M.L., Richels,R., and Edmonds, J.A., “Economic and environmental choices in the stabilization of atmospheric CO2 concentrations”, Nature 379 (1996)240.
Yahiro, H., Nakaya, K., Yamamoto, T., Saiki, K., Yamaura, H., “Effect of calcinations temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction”,Catal. Commun.7(2006)228.
Yu, X., Tu, S.T., Wang, Z., Qi, Y.,”On-board production of hydrogen for fuel cells over Cu/ZnO/Al2O3 catalyst coating in a micro-channel reactor”,J. Power Sources 150(2005)57.
Yu, X., Tu, S.T., Wang, Z., Qi, Y.,”Development of a microchannel reactor concerning steam reforming of methanol”, Chem. Eng. J. 116(2006)123.
Zhang, R., Sun,Y., Peng, S., “Dehydrogenation of methanol to methyl formate over CuO-SiO2 gel catalyst”, React. Kinet. Catal. Lett 67 (1999) 95.
Zhang, X.R., Wang, L.C., Yao, C.Z., Cao, Y.Y., Dai, W.L., He, H.Y., Fan, K.N.,”A highly effient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam regforming of methanol”,Catal. Lett. 102(2005)3.
Handbook of The Elements and Native Oxides, 1999XPS International, Inc.
吳榮宗, “工業觸媒概論” 增訂版, 興國出版社 (1980).
李秉傑, 邱宏明, 王亦凱, 合譯 “非均勻系催化原理與應用” , 渤海堂文化事業有限公司 (1988) .
姚品全, “淺談銅觸媒” , 觸媒與製程, 8(2), (2000) 47.
謝銘仲, “以稻殼灰分沈澱固著製備擔體銅觸媒特性之研究” , 國立中央大學化學工程研究所碩士論文 (2002).
黃鎮江, “燃料電池”,全華科技圖書股份有限公司(2003)。
涂耀仁, 陳郁文, “銅觸媒在醇類脫氫反應之應用”, 觸媒與製程,2(1)(1993)24.
本間琢也,王建義譯, “圖解燃料電池百科”, 全華科技圖書股份有限公司。
左峻德,燃料電池之特性與運用,2001年。
指導教授 張奉文(Feg-Wen Chang) 審核日期 2007-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明