博碩士論文 943204060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:150 、訪客IP:18.224.149.242
姓名 黃璽元(Shi-Yuan Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以雙重碳源合成高動力磷酸亞鐵鋰/碳複合陰極材料
(Synthesis of High Power LiFePO4/C Cathode Material Using dual Carbon Sources)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究
★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究以雙重碳源,高溫固相法製備橄欖石結構LiFePO4/C 複合陰極材料,期能利用碳塗佈於LiFePO4 表面的方式,改善該材料導電度不佳之缺點,增進其大電流充放電能力。首先針對不同煆燒溫度、煆燒時間、碳源添加量及鍍碳距離等變因進行電池性能測試,求出最佳製程條件;並利用各項材料鑑定,對添加單一碳源及雙重碳源合成之樣品進行各種物化性質探討與比較。
利用高溫固相法,添加20 wt.% 碳源A 及50 wt.% 碳源B 為雙重碳源,以250 oC/hr 之升降溫速率,600 oC 下煆燒12 h 合成LiFePO4/C,為本研究之最佳製程。LiFePO4/C 在充放電速率0.2 C 及充放電截止電壓分別為4.0 和2.8 V 時,其初次放電電容量為151 mAh/g,至電荷維持率80 % 時,循環壽命為481 次;於特徵曲線硬幣型電池測試中,於10 C 的高速充放電速率下,仍可得21 mAh/g 的電容量,顯示本材料於大電流充放電的情況下仍然具有良好表現。
在合成LiFePO4的過程中加入碳源,可抑制LiFePO4晶粒成長並提升電池性能,綜合樣品碳含量、比表面積及導電度的分析結果可知,加入碳量越多,可使材料得到更高的比表面積及導電度,但過多的碳反而會降低材料電容量,故添加最適量的碳源,使材料減少團聚,並均勻分散碳的分佈,為影響材料電容量的主要原因。此外,由拉曼光譜、四點探針導電度計及比表面積分析結果發現,添加雙重碳源之樣品具有較高的導電度與比表面積;由慢速循環伏安法計算材料鋰離子擴散係數,得知添加雙重碳源之樣品具有更佳的鋰離子傳導度,故可得到較佳的大電流充放電性能。
摘要(英) In this thesis, olivine LiFePO4/C composite cathode materials were synthesized by a solid state method using two different organic materials as dual carbon sources. In addition to disadvantages of low electronic conductivity and low lithium ion motion ability, LiFePO4 only reveals its good electrochemical properties at low current density and at room temperature. To overcome this problem, the LiFePO4 cathode material was coated with highly conductive carbon using dual carbon sources so that high power LiFePO4/C cathode materials could be obtained.
The electrochemical studies concluded the optimum calcinations process for the synthesized LiFePO4/C composite material were 600 oC for 12 h in Ar/H2 (vol. 95:5) atmosphere with the addition of 20 wt.% carbon A and 50 wt.% carbon B as double carbon sources. The LiFePO4/C delivered a discharge capacity of 151 mAhg-1 in the first cycle at a 0.2 C-rate between 4.0 to 2.8 V, and the number of cycles sustained was 481 cycles at a preset cut-off value of 80% capacity retention. In the cyclability tests of LiFePO4/C electrodes at different charging and discharging rates, the capacity retention remained very good for all different rates, and it showed capacity about 21 mAhg-1 at a high charge/discharge rate of 10 C at room temperature.
We have shown that carbon as a conductive additive plays an important role in improving the performance of LiFePO4 cathode materials. The results of BET and the four-point probe conductivity meter revealed that the specific surface area and the conductivity of LiFePO4/C both improved with increased levels of carbon addition. However, too much carbon coating could reduce the capacity of LiFePO4/C because lowers the ratio of active material in the composite and raises the resistance of lithium ion diffusion on the surface of the material. Adding an optimum amount of carbon increases the utilization of the active material and the electrical conductivity of electrode. Furthermore, Raman spectroscopy and the four-point probe conductivity meter both showed that the LiFePO4/C coated with dual carbon sources had greater conductivity than the cathodes coated with a single carbon source. Cyclic voltammetry also showed that we could obtain higher lithium ion diffusivity using dual versus a single carbon source.
關鍵字(中) ★ 雙重碳源
★ 鋰離子電池
★ 陰極材料
★ 磷酸亞鐵鋰
關鍵字(英) ★ lithium ion battery
★ cathode material
★ lithium iron phosphate
★ LiFePO4
★ dual carbon sources
論文目次 目錄......................................................I
圖目錄...................................................IV
表目錄...................................................XI
第一章 緒論...............................................1
1.1 前言......................................... 1
1.1.1 鋰離子電池簡介......................... 1
1.1.2 鋰離子電池的工作原理....................4
1.1.3 鋰離子電池陰極材料......................5
1.2 研究目的及架構......................... .......9
第二章 文獻回顧..........................................11
2.1 磷酸亞鐵鋰之發現..............................11
2.2 磷酸亞鐵鋰之合成方法..........................12
2.3 磷酸亞鐵鋰之結構..............................15
2.4 磷酸亞鐵鋰之充放電模型........................17
2.5 鋰離子電池陰極材料發展現況....................20
2.6 磷酸亞鐵鋰之近期發展方向......................22
第三章 實驗方法..........................................39
3.1 實驗儀器設備..................................39
3.2 實驗藥品器材..................................40
3.3 實驗步驟......................................41
3.4 材料鑑定分析..................................44
3.4.1 X光繞射( XRD )分析......................44
3.4.2 掃描式電子顯微鏡分析....................44
3.4.3 高分辨穿透式電子顯微鏡..................44
3.4.4 拉曼光譜................................45
3.4.5 微分掃描熱卡儀分析......................45
3.4.6 TOC總有機碳分析.........................45
3.4.7 導電度測試..............................45
3.4.8 表面積測試方法(BET).....................46
3.5 材料電化學特性分析............................46
3.5.1 電池性能測試............................46
3.5.2 慢速循環伏安分析........................49
第四章 結果與討論........................................51
4.1 添加單一碳源合成磷酸亞鐵鋰/碳複合陰極材料之電池
性能分析......................................51
4.2 以雙重碳源合成磷酸亞鐵鋰/碳複合陰極材料之電池性
能分析........................................55
(A) 煆燒溫度變因..............................55
(B) 碳源A 添加量變因..........................56
(C) 煆燒時間變因..............................59
(D) 碳源B 添加量變因..........................60
(E) 鍍碳距離變因..............................61
(F) 碳源A 及純碳源B 為雙重碳源................63
(G) 長循環測試................................64
(H) 特徵曲線測試..............................66
4.3 X光繞射分析...................................74
4.4 材料之SEM/EDS 分析............................78
4.5 材料之TEM/EDS 分析............................84
4.6 拉曼光譜鑑定..................................90
4.7 TOC總有機碳分析...............................92
(A) 以單一碳源合成LiFePO4/C 之碳源添加量變因..92
(B) 以雙重碳源合成LiFePO4/C 之碳源A 添加量變因93
(C) 以雙重碳源合成LiFePO4/C 之煆燒時間變因....94
(D) 以雙重碳源合成LiFePO4/C 之碳源B 添加量變因94
(E) 以雙重碳源合成LiFePO4/C 之鍍碳距離變因....95
4.8 表面積測試- BET方法...........................96
4.9 導電度測試....................................97
4.10 微分掃描熱卡儀熱穩定性分析...................99
4.11 慢速循環伏安分析............................101
第五章 結論.............................................104
第六章 參考文獻.........................................107
參考文獻 [1] 電動機車學習網
http://www.nsc.gov.tw/dept/acro/version01/battery/
electric/basictheory/kinds.htm
[2] T. Nagaura and K. Tozawa, Prog. Batts. Sol. Cells., 9,
209 (1990).
[3] 行動式電子產品的心臟 - 二次電池
http://www.getgoal.com.tw/tech/tech-32-3.htm
[4] 費定國, 高等應用電化學課程講義, 國立中央大學, 台灣, 中
華民國 (2006).
[5] chem.skku.ac.kr/~ywkwon/research/research.html.
[6] K. Mizushima, P. C. Jones, and P. J. Wiseman, Mater.
Res. Bull., 15, 7832789 (1980).
[7] M. Thackeray, Nature Mater., 1, 81 (2002).
[8] 吳溪煌, 高功率鋰電池正極材料, 2006材料年會會議論文。
[9] A. K. Padhi, K. S. Nanjundaswamy, and J. B.
Goodenough, J. Electrochem. Soc., 144, 1188 (1997).
[10] A. Yamada, S. C. Chung, and K. Hinokuma, J.
Electrochem. Soc, 148, A224 (2001).
[11] S.-Y. Chung, J. T. Bloking, and Y.-M. Chiang, Nature
Mater., 1, 123 (2002).
[12] P. P. Prosini, M. Lisi, D. Zane, and M. Pasquali,
Solid State Ionics, 148, 45 (2002) .
[13] M. Manickam, K. Minato, and M. Takata, J.
Electrochem. Soc., 150, A1085 (2003).
[14] G. C. Kuczynski, Trans. Am. Inst. Min. (Metall.)
Eng., 185, 169 (1949).
[15] H. S. Kim, B. W. Cho, and W. I. Cho, J. Power
Sources, 132, 235 (2004).
[16] C. J. Brinker and G. W. Scherer, Sol-Gel Science-The
Physics and Chemistry of Sol-Gel Processing, p.834.
[17] D. Arˇcon, A. Zorko, R. Dominko, and Z. Jagliˇciˇ
c, J. Phys.: Condens. Matter., 16, 5531 (2004).
[18] J. M. Tarascon and D. Guyomard, Electrochim. Acta,
38, 1221 (1993).
[19] K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H.
Lee and H. G. Kim, Electrochem. Comm., 5, 839 (2003).
[20] R. K. B. Gover and P. R. Slater, Annu. Rep. Prog.
Chem., Sect. A: Inorg. Chem., 100, 525 (2004).
[21] M. Thuckeray, Nature Mater., 2, 81 (2002).
[22] A. S. Andersson andJ. O. Tomas, J. Power Sources, 97-
98, 498 (2001).
[23] N. Ravet, J. B. Goodenough, and S. Besner, Improved
Iron Based Cathode Material, Electrochemical Society
Fall Meeting, Honolulu, Hawaii (1999).
[24] H. Huang, S.-C. Yin, and L. F. Nazar, Electrochem.
Solid-State Lett., 4, A170 (2001).
[25] Z. Chen and J. R. Dahn, J. Electrochemical Society,
149, A1184 (2002).
[26] S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou,
and H. K. Liu, Mater. Lett., 58, 1788 (2004).
[27] J. Lu, Z. Tang, Z. Zhang, and W. Shen, J.
Electrochemical Society, 152, A1441 (2005).
[28] F. Croce, A. D. Epifanio, J. Hassoun, A. Deptul, T.
Olczac, and B. Scrosati, Electrochem. Solid-State
Lett., 5, A47 (2002).
[29] S.-Y. Chung, J. T. Bloking, And Y.-M. Chiang, Nature
Mater., 1, 123 (2002).
[30] K.-F. Hsu, S.-Y. Tsay, and B.-J. Hwang, J. Power
Sources, 146, 529 (2005).
[31] H. Xie and Z. Zhou, Electrochim. Acta, 51, 2063
(2006).
[32] M. S. Islam, D. J. Driscoll, C. A. J. Fisher, and P.
R. Slater, Chem. Mater. 17, 5085 (2005).
[33] G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu,
S. X. Dou, and J.-H. Ahn, Electrochim. Acta, 50, 443
(2004).
[34] P. S. Herle, B. Ellis, N. Coombs, and L. F. Nazar,
Nature Mater., 3, 147 (2004).
[35] J. Ying, M. Lei, C. Jiang, C. Wan, X. He, J. Li, L.
Wang, and J. Ren, J. Power Sources, 158, 543 (2006).
[36] S.-Y. Chung and Y.-M. Chiang, Electrochem. Solid-
State Lett., 6, A278 (2003).
[37] C. Delacourt, C. Wurm, L. Laffont, J.-B. Leriche, and
C. Masquelier, Solid State Ionics, 177,333 (2006).
[38] J. Molenda, Solid State Ionics, 176,1687 (2005).
[39] G. X. Wang, S. L. Bewlay, J. Yao, J. H. Ahn, S. X.
Dou, and H. K. Liu, Electrochem. Solid-State Lett.,
7, A503 (2004).
[40] D. Wang, H. Li, S. Shi, X. Huang, and L. Chen,
Electrochim. Acta, 50, 2955 (2005).
[41] G. X. Wang, S. L. Bewlay, S. A. Needham, H. K. Liu,
R. S. Liu, V. A. Drozd, J.-F. Lee, and J. M. Chen, J.
Electrochem. Soc., 153, A25 (2006).
[42] A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K.
Hinokuma, K.-Y. Liu, and Y. Nishi, J. Power Sources,
119-121, 232 (2003).
[43] T. Nakamura, Y. Miwa, M. Tabuchi, and Y. Yamada,
J.Electrochem. Soc. , 153, A1108 (2006).
[44] N. Penazzi, M. Arrabito, M. Piana, S. Bodoardo, S.
Panero, and I. Amadei, J. Euro. Ceram. Soc., 24, 1381
(2004).
[45] M. Takahashi, S. Tobishima, K. Takei and Y. Sakurai,
J. Power Sources, 97-98, 508 (2001).
[46] P. P. Prosini, M. Carewska, S. Scaccia, P.
Wisniewski, S. Passerini, and M. Pasquali, J.
Electrochem. Soc., 149, A886 (2002).
[47] C. Delacourt, P. Poizot, S. Levasseur and C.
Masquelier, Electrochem. Solid-State Lett., 9, A352
(2006).
[48] 呂承璋, 碩士論文, 國立中央大學, 台灣, 中華民國 (2002).
[49] 呂承璋, 碩士論文, 國立中央大學, 台灣, 中華民國 (2002).
[50] K. F. Hsu, S. Y. Tsaya, and B. J. Hwang, J. Mater.
Chem., 14, 2690 (2004).
[51] S. J. Kwon, C. W. Kima, W. T. Jeong and K. S. Lee, J.
Power Sources, 137, 93 (2004).
[52] C. H. Mi, X. B. Zhao, G. S. Cao, and J. P. Tu, J.
Electrochem. Soc., 152, A483 (2005).
[53] X. Liao, Z. Ma, L. Wang, X. Zhang, Y. Jiang and Y.
Hea, Electrochem. Solid State Lett., 7, A522 (2004).
[54] S. Franger, F. L. Cras, C. Bourbon, and H. Rouault,
J. Power Sources, 119, 252 (2003).
[55] Y. Xu, Y. Lu, L. Yan, Z. Yang, and R. Yang, J. Power
Sources, 160, 570 (2006).
[56] 科學工業園區管理局
http://service.sipa.gov.tw/WEB/Jsp/Page/index.jsp?
thisRootID=441
[57] Y. Hu, M. M. Doeff, R. Kostecki and R. Finonesa, J.
Electrochem. Soc., 151, A1279 (2004).
[58] A. A. Salah, A. Mauger, K. Zaghib, J. B. Goodenough,
N. Ravet, M. Gauthier, F. Gendron, and C. M. Julien,
J. Electrochem. Soc., 153, A1692 (2006).
[59] G. Li, H. Azuma, and M. Tohda, J. Electrochem. Soc.,
147, A743 (2002).
[60] J. R. Dahn, J. Jiang, L. M. Moshurchak, M. D.
Fleischauer, C. Buhrmester, and L. J. Krause, J.
Electrochem. Soc., 152, A1283 (2005).
指導教授 費定國(Ting-Kuo Fey) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明