博碩士論文 953204015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.224.0.25
姓名 蘇青珮(Ching-pei Su)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 由血漿蛋白質吸附與血小板貼附行為探討多孔洞商業高分子薄膜之生物適應性質
(Biocompatibility studies of commercial porous polymeric membranes by plasma protein adsorption and platelet adhesion)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要是利用在多孔性高分子膜表面,血漿蛋白質吸附與血小板貼附,與此兩者之間的相互關係,配合膜的親疏水性進行討論,以期能說明多孔膜的生體適應性,以及血漿中蛋白質吸附至多孔膜表面時,可能對血小板貼附所造成的影響。第一個部份為靜態地吸附蛋白質與血小板,並利用單一蛋白質在多孔膜上吸附後,對血小板貼附的影響;第二個部份則是進行多孔膜接觸血漿,在不同時間長短下的蛋白質吸附檢測,並在不同時間吸附蛋白質後進行血小板的貼附實驗。
在靜態蛋白質吸附實驗中,利用自配製之三種血漿主要蛋白質混合液(fibrinogen、human serum albumun與?-globulin)與離心全血後所得血小板貧乏血漿(PPP)進行蛋白質吸附,因蛋白質的競爭性吸附,與血漿中其他分子對蛋白質的取代作用(Vroman effect),故在兩種溶液中的蛋白質吸附量,除了容易改變構型與表面作用力較強的fibrinogen之外,並無明顯相關性。血小板吸附實驗則是以離心全血後得富含血小板溶液(PRP),貼附後以掃瞄式電子顯微鏡(SEM),觀察血小板的表面形貌與計數貼附量,而比較其與蛋白質吸附的結果,血小板的貼附量與fibrinogen吸附量呈一線性關係;另外在經過單一蛋白質吸附後,進行移除血漿蛋白質後所得之無血漿血小板溶液(serum-free platelet, SFP)的貼附,也可發現 fibrinogen對血小板貼附有正面的影響,因為血小板表面具有糖蛋白(GPIIb/IIIa),是為與fibrinogen結合的受器。
而隨時間進行的實驗,利用PPP進行吸附便可清楚觀察到,在平坦的玻璃蓋玻片表面上,蛋白質的吸附符合競爭性吸附的描述,但在表面呈纖維狀,較不平坦的多孔膜則無此現象。而在PPP隨時間吸附後進行SFP中血小板的貼附,觀察到在多孔膜上仍然會有血小板貼附達最大值後,隨時間減少的情形,與蛋白質吸附量量測的結果不同,推測原因為蛋白質在吸附於多孔膜表面後,發生了構型重排,雖保有被特定抗體專一辨識的性質,但已失去與血小板產生連結的功能。
摘要(英) Surface properties of poymeric biomaterials, such as specific functional groups, charges, and hydrophobicity, play important roles in modulating protein adsorption and cell adhesion on polymeric membranes. Besides, the competitive nature of protein adsorption makes the adsorption behavior and the induced cell adhesion complex. The competitive adsorption of proteins depends upon its molecular weight, bulk concentration of proteins and surface affinity to the proteins.
The major focus of this study is to investigate the influencing factors for plasma protein adsorption and platelet adhesion on the membrane filters having various kinds of chemical structure and pore size. We found that the adsorption amounts of fibrinogen and ?-globulin decreased while increase of that of human serum albumin (HSA) increased with the membrane hydrophobicity increasing. The human serum albumin was more adsorbed on the membranes from platelet-poor-plasma (PPP) than from mixed protein solution (MPS) consisting of human albumin, ?-globulin and fibrinogen. This tendency was extensively found on hydrophobic membranes compared to the hydrophilic membranes. The number of adhering platelets was lower on membranes with a decreased amount of adsorbed fibrinogen. Suppression of platelet adhesion could be elucidated by a reduction of protein adsorption, in particular of fibrinogen, which bound to the platelet membrane glycoprotein, GP IIb–IIIa. Time-dependent adsorption of fibrinogen indicates that Vroman effect, the displacement of fibrinogen, induced on the flat surface such as glass plates, but was not observed on the porous polymeric membranes.
關鍵字(中) ★ 血液適應性
★ 生物適應性
★ 高分子膜
★ 蛋白質吸附
★ 血小板
關鍵字(英) ★ porous polymeric membranes
★ biocompatibility
★ plasma protein adsorption
★ platelet adhesion
論文目次 目錄
中文摘要 I
ABSTRACT III
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
第二章 文獻回顧 4
2.1 血液相容性材料的探討 4
2.1.1 血漿蛋白質吸附 8
2.1.2 血小板吸附與活化 13
2.1.3白血球的貼附與活化及發炎反應 (inflammatory response) 17
2.2 多孔性高分子膜 23
2.2.1多孔性高分子膜應用在血液透析的發展 23
2.2.2常見高分子膜材料回顧 26
第三章 實驗藥品與儀器設備 30
3.1 實驗藥品 30
3.2 儀器設備 32
3.3 實驗方法 33
3.3.1 PBS緩衝液的製備 33
3.3.2 蛋白質吸附實驗 33
3.3.2.1 血漿溶液的製備 33
3.3.2.2 蛋白質吸附實驗(實驗組) 33
3.3.2.3 蛋白質吸附實驗(控制組) 35
3.3.2.4 不同時間血漿蛋白質的吸附 35
3.3.3 血小板貼附實驗 36
3.3.3.1 血小板溶液的製備 36
3.3.3.2 血小板貼附 36
3.3.3.3單一蛋白質吸附後再進行血小板貼附 37
3.3.3.4血漿蛋白質隨時間吸附後再進行血小板貼附 37
第四章 結果與討論 39
4.1 表面分析 39
4.2 蛋白質吸附實驗 41
4.2.1 水接觸角與蛋白質吸附的關係 41
4.2.2混合蛋白質溶液(Mixed protein solution, MPS)與血小板貧乏血漿(Platelet-poor-plasma, PPP)蛋白質吸附量的關係 43
4.3血小板貼附實驗 50
4.3.1水接觸角、蛋白質吸附與富含血小板血漿(PRP)中血小板貼附的關係
50
4.3.2富含血小板血漿(PRP)中血小板貼附之SEM形貌圖 53
4.3.3蛋白質吸附與血小板貼附之關係 61
4.3.3.1 Fibrinigen對血小板貼附的影響 63
4.3.3.2 HSA對血小板貼附的影響 66
4.3.3.3 IgG對血小板貼附的影響 70
4.4蛋白質不同吸附時間之吸附量 74
4.4.1比較PPP與MPS中蛋白質隨時間的吸附 74
4.4.2 PPP中蛋白質隨時間的吸附後進行血小板的貼附 77
4.4.2.1血漿蛋白質隨時間吸附於PC膜後,血小板的貼附情形 77
4.4.2.2血漿蛋白質隨時間吸附於PTFE膜後,血小板的貼附情形 80
4.4.2.3血漿蛋白質隨時間吸附於玻璃蓋玻片後,血小板的貼附情形 83
第五章 結論 89
第六章 參考文獻 92
圖目錄
圖2-1 凝血機制 7
圖2-2 酵素連結免疫吸附分析法之簡易流程圖 12
圖2-3 血小板的對多項生理機能的調控 14
圖2-4 Foreign body reaction 19
圖2-5 白血球、血小板與內皮細胞之間的相對應受器 20
圖2-6 常見的PEG固定化方法 27
圖3-1 酵素連結免疫吸附分析儀 32
圖4-1 各多孔性高分子膜之靜態水接觸角量測值 39
圖4-2 FN(PPP)吸附與接觸角之關係 42
圖4-3 IgG(PPP)吸附與接觸角之關係 42
圖4-4 HSA(PPP)吸附與接觸角之關係 42
圖4-5 對血漿進行稀釋後測試其吸附量的差異 43
圖4-6 FN於MPS與PPP中吸附量的關係(不同膜材) 44
圖4-7 IgG於MPS與PPP中吸附量的關係(不同膜材) 44
圖4-8 HSA於MPS與PPP中吸附量的關係(不同膜材) 44
圖4-9 FN於MPS與PPP中吸附量的關係(不同親疏水性) 45
圖4-10 IgG於MPS與PPP中吸附量的關係(不同親疏水性) 45
圖4-11 HSA於MPS與PPP中吸附量的關係(不同親疏水性) 45
圖4-12 綜合比較三種蛋白質於MPS與PPP中吸附量的關係 46
圖4-13 Fibrinogen結構示意圖 48
圖4-14 血小板計數方法 50
圖4-15 血小板貼附量與接觸角關係圖 51
圖4-16 血小板貼附量與FN吸附量關係圖 51
圖4-17 血小板貼附量與HSA吸附量關係圖 52
圖4-18 SEM拍攝之血小板貼附表面形貌 53
圖4-19 聚碳酸脂膜(polycarbonate, PC)表面PRP血小板的貼附 54
圖4-20 鐵氟龍(PTFE)表面PRP血小板的貼附 55
圖4-21 聚偏二氟乙烯樹脂膜(PVDF)表面PRP血小板的貼附 58
圖4-22 聚碸(PSf)表面PRP血小板的貼附 59
圖4-23 醋酸脂膜(cellulose acetate, CA)表面PRP血小板的貼附 59
圖4-24 聚碳酸脂膜(PC, 0.2?m)在FN吸附後,
PRP中的血小板貼附表面形貌 62
圖4-25 聚碳酸脂膜(PC, 0.2?m)在FN吸附後,
SFP中的血小板貼附表面形貌 62
圖4-26 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在FN吸附後,
PRP中的血小板貼附表面形貌 63
圖4-27 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在FN吸附後,
SFP中的血小板貼附表面形貌 63
圖4-28 鐵氟龍(PTFE, 0.2?m)在FN吸附後,
PRP中的血小板貼附表面形貌 64
圖4-29 鐵氟龍(PTFE, 0.2?m)在FN吸附後,
SFP中的血小板貼附表面形貌 64
圖4-30 單一蛋白質吸附3小時後之ELISA吸收值 65
圖4-31 聚碳酸脂膜(PC, 0.2?m)在HSA吸附後,
PRP中的血小板貼附表面形貌 66
圖4-32 聚碳酸脂膜(PC, 0.2?m)在HSA吸附後,
SFP中的血小板貼附表面形貌 66
圖4-33 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在HSA吸附後,
PRP中的血小板貼附表面形貌 67
圖4-34 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在HSA吸附後,
SFP中的血小板貼附表面形貌 67
圖4-35 鐵氟龍(PTFE, 0.2?m)在HSA吸附後,
PRP中的血小板貼附表面形貌 68
圖4-36 鐵氟龍(PTFE, 0.2?m)在HSA吸附後,
SFP中的血小板貼附表面形貌 68
圖4-37 聚碳酸脂膜(PC, 0.2?m)在IgG吸附後,
PRP中的血小板貼附表面形貌 70
圖4-38 聚碳酸脂膜(PC, 0.2?m)在IgG吸附後,
SFP中的血小板貼附表面形貌 70
圖4-39 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在IgG吸附後,
PRP中的血小板貼附表面形貌 71
圖4-40 聚偏二氟乙烯樹脂膜(PVDF, 0.22?m)在IgG吸附後,
SFP中的血小板貼附表面形貌 71
圖4-41 鐵氟龍(PTFE, 0.2?m)在IgG吸附後,
PRP中的血小板貼附表面形貌 72
圖4-42 鐵氟龍(PTFE, 0.2?m)在IgG吸附後,
SFP中的血小板貼附表面形貌 72
圖4-43 MPS中的FN隨時間吸附量 74
圖4-44 PPP中的FN隨時間吸附量 75
圖4-45 MPS中的IgG隨時間吸附量 75
圖4-46 PPP中的IgG隨時間吸附量 75
圖4-47 MPS中的HSA隨時間吸附量 76
圖4-48 PPP中的HSA隨時間吸附量 76
圖4-49 PC膜(0.2?m)先以PPP蛋白質吸附特定時間後進行血小板的貼附 77
圖4-50 PTFE膜(0.2?m)先以PPP蛋白質吸附特定時間後進行血小板的貼附 80
圖4-51 玻璃蓋玻片先以PPP蛋白質吸附特定時間後進行血小板的貼附 84
圖4-52 PTFE膜表面FN吸附與血小板貼附關係於各部份實驗中結果之比較 87
表目錄
表2-1 心血管設備可能引起之併發症 5
表2-2 常見之有機高分子生物材料與其醫療用途 6
表2-3 血液組成 9
表2-4 血小板細胞表面感受器 15
表2-5 白血球的種類 18
表2-6 白血球之表面受器 20
表2-7 白血球表面與發炎反應相關的受器 22
表2-8 1965年前非薄膜式的血液透析器設計 24
表2-9 生醫用膜發展 24
表2-10 常見的表面性質分析方法 28
表3-1 使用膜材之成分、廠牌與孔徑大小。 31
表4-1 Fibrinogen、?-globulin與Human serum albumin的分子量 48
表4-2 血小板於多孔性高分子膜表面貼附數量 51
參考文獻 1. Padera R. F., F. J. Schoen, Cardiovascular Medical Devices. In Biomaterials Science. An introduction to materials in medicine; Ratner B. D., A. S. Hoffman, F. J. Schoen,; J. E. Lemons, Eds.; Elsevier, Academic Press: San Diego, CA, 2004, 470-494.
2. Seal B. L., T.C. Otero, A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Material Science and Engineering: Reports, 2001, 34, 147-230.
3. Pizzoferrato A., G. Ciapetti, S. Stea, E. Cenni, C.R. Arciola, D. Granchi, L. Savarino, Cell culture methods for testing biocompatibility. Clinical Materials, 1994, 15, 173-190.
4. Kirkpatrick C. J., F. Bittinger, M. Wagner, H. Kohler, T.G. van Kooten, C.L. Klein, M. Otto, Current trends in biocompatibility testing. Proceeding of the Institution of Mechanical Engineering [H], 1998, 212, 75-84.
5. Ramakrishna S., J. Mayer, E. Wintermantel, K.W. Leong. Biomedical applications of polymer-composite materials: a review. Composites Science and Technology, 2001, 61, 1189-1224.
6. Nydegger U., R. Rieben, B. Lammle, Biocompatibility in transfusion medicine. Transfusion Science, 1996, 4, 481-488.
7. Kurtza S. M., J. N. Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28, 4845-4869.
8. Oh S. H., J. H. Kim, K. S. Song, B. H. Jeon, J. H. Yoon, T. B. Seo, U. Namgung, I. W. Lee, J. H. Lee, Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials, 2008, 29, 1601-1609.
9. Ye S. H., J. Watanabe, M. Takai, Y. Iwasaki, K. Ishihara, High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Biomaterials, 2006, 27, 1955-1962.
10. Brown B. A., Hematology: Principles and Procedures, Philadelphia Lea & Febiger, 1993.
11. Rodrigues S. N., I. C. Gonc-alves, M. C. L. Martins, M. A. Barbosa, B. D. Ratner, Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 2006, 27, 5357-5367.
12. Savage B., Z. M. Ruggeri, Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein-IIb-IIIa on nonactivated platelets. Journal of Biological Chemistry, 1991, 266, 11227–11233.
13. Tsai W. B., J. M. Grunkemeier, C. D. McFarland, T. A. Horbett, Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. Journal of Biomedical Materials Research, 2002, 60, 348-359.
14. Kottkemarchant K., J. M. Anderson, Y. Umemura, R. E. Marchant, Effect of albumin coating on the invitro blood compatibility of dacron arterial prostheses. Biomaterials, 1989, 10, 147-155.
15. Liu T. Y., W. C. Lin, L. Y. Huang, S. Y. Chen, M. C. Yang, Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials, 2005, 26, 1437-1444.
16. Jenney C.R., J. M. Anderson, Adsorbed serum proteins responsible for surface dependent human macrophage behavior. Journal of Biomedical Materials Research, 2000, 49, 435-447.
17. Brodbeck W. G., E. Colton, J. M. Anderson, Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. Journal of Material Science, Material in Medicine, 2003, 14, 671-675.
18. Jenney C. R., J. M. Anderson, Adsorbed IgG: a potent adhesive substrate for human macrophages. Journal of Biomedical Materials Research, 2000, 50, 281-290.
19. Hu W. J., J. W. Eaton, T. P. Ugarova, L. Tang, Molecular basis of biomaterial mediated foreign body reactions. Blood, 2001, 98, 1231-1238.
20. Moriau M., E. P. Lavenne, J. M. Scheiff, C. Col Debeys, The physiological mechanisms of haemostasis. In Blood Platelets; Hologramme Ed.: Neuilly-sur-Seine, 1988.
21. Knetsch M. L.W., Y. B. J. Aldenhoff, L. H. Koole, The effect of high-density-lipoprotein on thrombus formation on and endothelial cell attachement to biomaterial surfaces. Biomaterials, 2006, 27, 2813-2819.
22. Horbett T., The role of adsorbed proteins in tissue response to biomaterials. In: Biomaterials science: an introduction to biomaterials in medicine; Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons, editors. San Diego, CA: Elsevier Academic Press; 2004, 237-246.
23. Xu L. C., C. A. Siedlecki, Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials, 2007, 28, 3273-3283.
24. Krishnan A., C. A. Siedlecki, E. A. Vogler, Mixology of Protein Solutions and the Vroman Effect. Langmuir, 2004, 20, 5071-5078
25. Cornelius R. M., J. Archambault, J. L. Brash, Identification of apolipoprotein A-I as a major adsorbate on biomaterial surfaces after blood or plasma contact. Biomaterials, 2002, 23, 3583-3587.
26. Lück M., B. R. Paulke, W. Schröder, T. Blunk, R. H. Müller, Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. Journal of Biomedical Materials Research, 1998, 39, 478-485.
27. Higuchi A., K. Sugiyama, B. O. Yoon, M. Sakurai, M. Hara, M. Sumita, S. Sugawara, T. Shirai, Serum protein adsorption and platelet adhesion on pluronic™-adsorbed polysulfone membranes. Biomaterials, 2003, 24, 3235-3245.
28. Andersson J., K. N. Ekdahl, J. D. Lambris, B. Nilsson, Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials, 2005, 26, 1477-1485.
29. Engvall E., P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 1971, 8, 871-874.
30. Harrison P., Platelet function analysis. Blood Reviews, 2005, 19, 111-123
31. Gorbet M. B., M. V. Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25, 5681-5703.
32. Calvete J. J., Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex. Journal of Thrombosis and Haemostasis, 1994, 72, 1-15.
33. Tamada Y., E. A. Kulik, Y. Ikada, Simple method for platelet counting. Biomateriols, 1995, 16, 259-261.
34. Blockmans D., H. Deckmyn, J. Vermylen, Platelet activation. Blood Reviews, 1995, 9, 143-156.
35. Zarbock A., R. K. Polanowska-Grabowska, K. Ley, Platelet-neutrophil-interactions: Linking hemostasis and inflammation. Blood Reviews, 2007, 21, 99-111.
36. Jy W., W. W. Mao, L. L. Horstman, J. Tao, Y. S. Ahn, Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells, Molecules, and Diseases, 1995, 21, 217-31.
37. Itoh S., C. Susuki, T. Tsuji, Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species. Journal of Biomedical Materials Research Part A, 2006, 77A, 294-303.
38. Ramström S., K. V. Öberg, F. Åkerström, C. Enström, T. L. Lindahl, Platelet PAR1 receptor density-Correlation to platelet activation response and changes in exposure after platelet activation. Thrombosis Research, 2008, 121, 681-688.
39. Anderson J. M., A. Rodriguez, D. T. Chang, Foreign body reaction to biomaterials. Seminars in Immunology, 2008, 20, 86-100.
40. Shen M., I. Garcia, R. V. Maier, T. A. Horbett, Effects of adsorbed proteins and surface chemistry on foreign body giant cell formation, tumor necrosis factor alpha release and procoagulant activity of monocytes. Journal of Biomedical Materials Research, 2004, 70A, 533-541.
41. Nathan C. F., Secretory products of macrophages. Journal of Clinical Investigation, 1987, 79, 319-326.
42. Camerer E, Kolsto A-B, and Pridz H, “Cell biology oftissue factor, the principal initiator ofcoagulation.” Thrombosis Research, 1996, 81, 1-41.
43. Smith J. A., Neutrophils, host defense, and inflammation; a double-edged sword. Journal of Leukocyte Biology, 1994, 56, 672-686.
44. Anderson J. M., K. M. Miller, Biomaterial biocompatibility and the macrophage. Biomaterials, 1984, 5, 5-10.
45. Shen M., T. A. Horbett, The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. Journal of Biomedical Materials Research, 2001, 57, 336-345.
46. Hunt J. A., G. Meijs, D. F. Williams, Hydrophilicity of polymersand soft tissue responses: a quantitative analysis. Journal of Biomedical Materiels Reseach, 1997, 36, 542-549.
47. Collier T. O., J. M. Anderson, Protein and surface effects on monocyte and macrophage adhesion, maturation, and survival. Journal of Biomedical Materials Research, 2002, 60, 487-496.
48. Iwasaki Y., S. Sawada, K. Ishihara, G. Khang, and H. B. Lee, Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend. Biomaterials, 2002, 23, 3897-3903.
49. Klein E., The modern history of haemodialysis membranes and controllers. Nephrology, 1998, 4, 255-265.
50. Wang Z. G., L. S. Wan, Z. K. Xu, Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science, 2007, 304, 8-23.
51. Czop J. K., K.F. Austen, Properties of glycans that activate the human alternative complement pathway and interact with the human monocyte beta-glucan receptor. Journal of Immunology, 1985, 135, 3388-3393.
52. Liu T. Y., W. C. Lin, L. Y. Huang, S. Y. Chen, M. C. Yang, Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polymers for Advanced Technology, 2005, 16, 413-419.
53. Dai Z. W., F. Q. Nie, Z. K. Xu, Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules. Journal of Membrane Science 2005, 264, 20-26.
54. Higuchi A., H. Hashiba, R. Hayashi, B. O. Yoon, M. Sakurai, M. Hara, Serum protein adsorption and platelet adhesion on aspartic-acid-immobilized polysulfone membranes. Journal of Biomaterial Science, Polymer Edn, 2004, 15, 1051-1063.
55. Zhao C., X. Liu, M. Nomizu, N. Nishi, Blood compatible aspects of DNA-modified polysulfone membrane-protein adsorption and platelet adhesion. Biomaterials, 2003, 24, 3747-3755.
56. Lin D. J., D. T. Lin, T. H. Young, F. M. Huang, C. C. Chen, L. P. Cheng, Immobilization of heparin on PVDF membranes with microporous structures. Journal of Membrane Science, 2004, 245, 137-146.
57. Zhang Z., S. Chen, Y. Chang, S. Jiang, Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. Journal of Physical Chemistry B, 2006, 110, 10799-10804.
58. Park J. Y., M. H. Acar, A. Akthakul, W. Kuhlman, A. M. Mayes, Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27, 856-865.
59. Xua Z. K., F. Q. Nie, C. Qu, L. S. Wan, J. Wu, K. Yao, Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials, 2005, 26, 589-598.
60. Xu J., Y. Yuan, B. Shan, J. Shen, S. Lin, Ozone-induced grafting phosphorylcholine polymer onto silicone film grafting 2-methacryloyloxyethyl phosphorylcholine onto silicone film to improve hemocompatibility. Colloids and Surfaces B: Biointerfaces, 2003, 30, 215-223.
61. Krsko P., M, Libera, Biointeractive hydrogels. Materialtoday, 2005, 8, 36-44.
62. Vermette P., L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003, 28, 153-198.
63. Ratner B. D., “Surface properties and surface characterization of materials" In Biomaterials Science. An introduction to materials in medicine; Ratner B. D., A. S. Hoffman, F. J. Schoen, J. E. Lemons, Eds.; Elsevier, Academic Press: San Diego, CA, 2004, 40-59.
64. Higuchi A., N. Aoki, T. Yamamoto, T. Miyazaki, H. Fukushima, T. M. Tak, S. Jyujyoji, S. Egashira, Y. Matsuoka, S. H. Natori, Temperature-induced cell detachment on immobilized pluronic surface. Journal of Biomedical Materials Research Part A, 2006, 79, 380-392.
65. Ishihara K., K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999, 20, 1553-1559.
66. Shen L. Q., Z. K. Xu, Z. M. Liu, Y. Y. Xu, Ultrafiltration hollow fiber membranes of sulfonated polyetherimide/polyetherimide blends: preparation, morphologies and anti-fouling properties. Journal of Membrane Science, 2003, 218, 279-293.
67. Rahimpour A., S. S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. Journal of Membrane Science, 2007, 305, 299-312.
68. Nimeri G., B. Lassen, C. G. Golander, U. Nilsson, H. Elwing, Adsorption of fibrinogen and some other proteins from blood plasma at a variety of solid surfaces. Journal of Biomaterial Science, Polymer Edition, 1994, 6, 573-583.
69. Knetsch M. L. W., Y. B. J. Aldenhoff, L. H. Koole, The effect of high-density-lipoprotein on thrombus formation on and endothelial cell attachement to biomaterial surfaces. Biomaterials, 2006, 27, 2813-2819.
70. 杉山開一朗, “—膜質吸着評価血液適合性.”博士論文, 日本成蹊大學工學研究所, 2003.
71. Toscano A., M. M. Santore, Fibrinogen Adsorption on Three Silica-Based Surfaces: Conformation and Kinetics. Langmuir, 2006, 22, 2588-2597.
72. Tunc S., M. F. Maitz, G. Steiner, L. V´azquez, M. T. Pham, R. Salzer, In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids and Surfaces B: Biointerfaces, 2005, 42, 219-225.
73. Chang Y., Y. J. Shih, R. C. Ruaan, A. Higuchi, W. Y. Chen, J. Y. Lai, Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. Journal of Membrane Science, 2008, 309, 165-174.
74. Vroman L., Finding seconds count after contact with blood (and that is all I did). Colloids and Surfaces B: Biointerfaces, 2008, 62, 1-4.
75. Green R. J., M. C. Davies, C. J. Roberts, S. J. B. Tendler, Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials, 1999, 20, 385-391.
指導教授 陳文逸(Wen-yih Chen) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明