博碩士論文 953204059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.227.228.95
姓名 黃志翔(Chih-Hsiang Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 稻殼灰分擔載銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究
(Hydrogen production by oxidative steam reforming of methanol over Cu/RHA catalysts)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以稻殼為起始原料,經過水洗、酸洗、熱解及碳燒等前處理程序,製成稻殼灰分(非晶型SiO2, 99 %以上)。使用沈澱固著法製備稻殼灰分擔體銅觸媒(簡稱為Cu/RHA觸媒),再利用氧化性甲醇蒸氣重組反應(OSRM)產製氫氣的程序測試其活性。此反應有良好的氫氣產生速率,以及相當低的一氧化碳選擇率,可避免因一氧化碳濃度太高而毒化燃料電池中的鉑電極。本研究也利用感應耦合電漿原子放射光譜儀(ICP-AES)、熱重分析儀(TGA)、X射線繞射儀(XRD)、掃描式電子顯微鏡(SEM)、X射線光電子分析儀(XPS)、程式升溫還原(TPR)及N2O分解吸附(dissociative adsorption of nitrous oxide)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定。
從XRD結果可看出銅的繞射峰不明顯,應為銅晶粒過小且結晶性不佳。由TPR圖譜可得知,銅載量愈高愈難還原,不同的煅燒溫度有相似的還原溫度。N2O分解吸附的結果,可知當銅載量由5.4 wt%增加到29.9 wt%,其分散度降低,平均粒徑則由1.10增加至3.56 nm,而銅觸媒表面積在載量20.4 wt%為最大。由SEM看出當載量、煅燒溫度增加時,觸媒顆粒皆變大。從XPS的結果中發現,銅觸媒中Cu0有利於OSRM反應。經過活性測試後發現,觸媒的活性與銅的顆粒大小及金屬銅表面積有關係。當銅觸媒表面積愈大且顆粒愈小時,氫氣產生速率愈高,故20.4 wt%的Cu/RHA活性反應較佳。而進料中O2/CH3OH及H2O/CH3OH的莫耳比也是影響反應的重要因素,當O2/CH3OH莫耳比為0.3、H2O/CH3OH莫耳比為1時,有較高的甲醇轉化率與氫氣產生速率,且一氧化碳選擇率可維持在2 %以下。而增加反應溫度,甲醇轉化率、氫氣產生速率與一氧化碳選擇率都會上升,523 K為最佳反應溫度。
摘要(英) In this work, rice husk ash (RHA) was used as a catalyst support. Selective production of hydrogen by oxidative steam reforming of methanol (OSRM) over Cu/RHA catalysts, prepared by deposition-precipitation method was studied. The catalysts were characterized by ICP-MS, TGA, TPR, Dissociative adsorption of nitrous oxide, XRD, SEM and XPS analyses. XRD patterns of Cu/RHA catalysts indicate that the copper species particles, which are amorphous or very small and highly dispersed within the matrix. From TPR, it was difficult to reduce for higher copper loading and higher calcination temperature. From dissociative adsorption of nitrous oxide, copper loading increases from 5.4 to 29.9 wt% with decrease in dispersion and increase in metallic surface area. When calcination temperature is at 673 K, it has the biggest metallic surface area and smallest particle size. SEM observations show that increasing copper loading, particle size become bigger and increasing calcination temperature, the catalyst is sintering. XPS analyses demonstrate that in calcination at 673 K and reduction at 573 K, the copper states change from copper oxide to metallic copper. The catalytic activity of Cu/RHA catalysts for the OSRM reaction significantly depends on the particle size and surface area of metallic copper. Increasing surface area and decreasing particle size raises the hydrogen production rate. In this study, the catalyst with 20.4 wt% loading and calcined at 673 K shows the highest activity for methanol conversion and hydrogen production. The appropriate molar ratios of O2/CH3OH and H2O/CH3OH for reaction are 0.3 and 1.0, respectively. Both hydrogen production rate and methanol conversion increased with increasing reaction temperature. It has lower carbon monoxide selectivity at 523K. Comparing Cu/RHA with the Cu/SiO2 catalysts by OSRM in the same operating condition, we find that both two catalysts have the same hydrogen production rate and methanol conversion, but the Cu/RHA catalysts produce three times less carbon monoxide than the Cu/SiO2 catalysts.
關鍵字(中) ★ 銅觸媒
★ 氧化性甲醇蒸氣重組
★ 氫氣
★ 稻殼灰份
關鍵字(英) ★ hydrogen
★ copper catalyst
★ oxidative steam reforming of methanol
★ rice husk ash
論文目次 目錄 I
圖目錄 V
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 燃料電池原理 2
1.3 稻殼灰份介紹 4
1.4 甲醇製氫 5
1.5 擔體銅觸媒 7
1.6 研究內容與論文架構 7
第二章 文 獻 回 顧 9
2.1 稻殼的組成與性質 9
2.2 稻殼灰分擔體的製備 9
2.2-1 稻殼的酸洗 13
2.2-2 稻殼的熱解 14
2.3 銅觸媒的發展 15
2.4 沈澱固著法製備擔載銅觸媒 16
2.5 煅燒與還原程序 19
2.5-1 煅燒程序 19
2.5-2 還原程序 20
2.6 擔體效應 21
2.7銅金屬表面積的測定 22
2.8 銅的活性位置 23
2.9 氧化性甲醇蒸氣重組反應 24
第三章 實驗方法與裝置 29
3.1 稻殼灰分擔體的製備 29
3.1-1 水洗程序 29
3.1-2 酸洗程序 29
3.1-3 熱解程序 30
3.1-4 碳燒程序 32
3.2 擔載銅觸媒的製備 35
3.3 擔體銅觸媒的鑑定分析 36
3.3-1 感應耦合電漿原子放射光譜儀(ICP-AES)分析 38
3.3-2 熱重分析(TGA) 38
3.3-3 X射線繞射分析(XRD) 39
3.3-4 程式升溫還原(TPR) 42
3.3-5 銅金屬表面積的量測 43
3.3-6 掃描式電子顯微鏡(SEM)分析 47
3.3-7 X射線光電子分析(XPS) 48
3.4 觸媒活性測試—氧化性甲醇蒸氣重組產製氫氣反應 52
3.5 實驗流程與操作變數 54
3.5-1 稻殼灰分(RHA)的製備 54
3.5-2 稻殼灰分擔體銅觸媒 (Cu/RHA) 54
3.6 數據的計算與實例 57
3.6-1 銅觸媒理論載量的定義與計算 57
3.6-2 轉化率的定義與計算 58
3.6-3 選擇率的定義與計算 62
3.6-4 產生速率的定義與計算 64
3.7 藥品、氣體及儀器設備 66
3.7-1 藥品 66
3.7-2 氣體 67
3.7-3 儀器設備 67
第四章 結果與討論 69
4.1 稻殼灰分組成的分析 69
4.2 物性分析 71
4.2-1 銅離子濃度對銅金屬載量的影響 71
4.2-2 煅燒條件的選擇 74
4.2-3 程式升溫還原(TPR)分析結果 76
4.2-4 觸媒表面積測定 79
4.2-5 X射線繞射分析(XRD) 84
4.2-6 掃描式電子顯微鏡(SEM) 89
4.2-7 X射線光電子分析(XPS) 93
4.3 化性分析 96
4.3-1 銅載量對觸媒活性的影響 96
4.3-2 煅燒溫度對觸媒活性的影響 100
4.3-3 進料比例對觸媒活性的影響 105
4.3-3-1 不同O2/CH3OH 比的影響 105
4.3-3-2 不同H2O/CH3OH莫耳比的影響 111
4.3-4 反應溫度對觸媒活性的影響 117
4.3-5 Cu/RHA與Cu/SiO2分析比較結果 119
第五章 結論 127
參考文獻 131
參考文獻 Agrell, J., Boutonnet, M., Melian-Cabrera, I., Fierro, J.L.G., “Production of hydrogen from methanol over binary Cu/ZnO catalysts”, Appl. Catal. A: Gen. 253 (2003) 201.
Amick, J.A. ,“Purification of Rice Hulls As a Source of Solar Grade Silicon for Solar-Cells”, J. Electrochem. Soc. 129 (1982) 864.
Balkenende, A.R., Van Kooten, W.E.J., Pieters, A.R., Lamers, M., Janssen, F.J.J.G., Geus, J.W., “XPS surface characterization of a Cu/SiO2 catalyst oxidized by NO or O2”, Appl. Surf. Sci. 68 (1993) 439.
Bond, G.C., Namijo, S.N., “An improved procedure for estimating the surface area of supported copper catalysts”, J. Catal. 118 (1989) 507.
Burch, R., Chappell, R.J., “Support and additive effects in the synthesis of methanol over copper catalysts”, Appl. Catal. 45 (1988) 131.
Burton, R.S., Richard, R.C., Alpert, S., “Municipal Solid Waste Prolysis”, AIChE System 70 (1974) 116.
Busca, G., Costantino, U., Marmottini, F., Montanari, T., Patrono, P. Pinzari, F., Ramis, G., “Methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts”, Appl.Catal. A: Gen. 310 (2006) 70.
Carter, J.L., Cusumano, J.A.,Sinfelt, J.H., J. Phy. Chem. 70 (1966) 2257.
Chang, F.W., Hsiao, T.J., Chang, S.W., Lo, J.J., “Nickel Supportedon Rice Husk Ash-Activity and Selectivity in CO2 Methanation”, Appl. Catal. A: Gen. 164 (1997) 225.
Chang, F.W., Hsiao, T.J., Shih, J.D., “Hydrogenation of CO2 over a Rice Husk Ash Supported Nickel Catalyst by Deposition-Precipitation”, Ind. Eng. Chem. Res. 37 (1998) 3838.
Chang, F.W., Tsay, M.T., Liang, S.P., “Hydrogenation of CO2 over Nickel Catalysts Supported on Rice Husk Ash Prepared by Ion Exchange”, Appl. Catal. A 209 (2001) 217.
Chang, F.W., Tsay, M.T., Kuo, M.S., Yang, C.M., “Characterization of Nickel Catalysts on RHA-Al2O3 Composite Oxides Prepared by Ion Exchange”, Appl. Catal. A: Gen. 226 (2002a) 213.
Chang, F.W., Tsay, M.T., Kuo, M.S., “Effect of Thermal Treatments on Catalyst Reducibility and Activity in Nickel Supported on RHA-Al2O3 Systems”, Thermochim. Acta 386 (2002b) 161.
Chang, F.W., Kuo, W.Y., Lee, K.C., “Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation”, Appl. Catal., A: Gen. 246 (2) (2003a) 253.
Chang, F.W., Kuo, M.S., Tsay, M.T., Hsieh, M.C., “Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation”, Appl. Catal. A: Gen. 247 (2) (2003b) 309.
Chang, F.W., Kuo, M.S., Tsay, M.T., Hsieh, M.C., “Effect of calcination temperature on catalyst reducibility and hydrogenation reactivity in rice husk ash-alumina supported nickel systems”, J. Chem. Tech. and Biotech. 79 (7) (2004) 691.
Chang, F.W., Kuo, M.S., Hsieh, M.C., “Preparation of Cr2O3-promoted copper catalysts on rice husk ash by incipient wetness impregnation”, Appl. Catal. A: Gen. 288 (1-2) (2005), 53.
Chang, F.W., Yang, H.C., Roselin, L.S., Kuo, W.Y., “Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange”, Appl. Catal. A: Gen. 304 (2006), 30.
Chang, H.F., Saleque, M.A., Hsu, W.S., Lin, W., “Characterization and dehydrogenation activity of Cu/Al2O3 catalysts prepared by electroless plating technique”, J. Mol. Catal. A 109 (1996) 249.
Chakraverty, A., Mishra, Banerjee, P., H.D., “Investigation of Production of Pure Amorphous White Silica”, J. Master. Sci. 23 (1988) 21.
Chen., H.W., White, J.M., Ekerdt, J.G., “Electronic effect of supports on copper catalysts”, J. Catal. 99 (1986) 293.
Chen, J.M., Chang, F.W., “Rice Husk as a Source of High Purity Carbon/Silica to Producing Silicon Tetrachloride”, Proc. Natl. Sci. Counc. 15 (1991a) 412.
Chen, J.M., Chang, F.W., “The Chlorination Kinetics of Rice Husk”, Ind. Eng. Chem. Res. 30 (1991b) 2214.
De Jong, K.P., Geus, J.W., Joziasse, J., “An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide”, J. Catal. 65 (1980) 437.
Dvo ák, B., Pa ek, J., “Determination of the specific copper surface area by chromatographic technique”, J. Catal. 18 (1970) 108.
Evans, J.W., Winwright, M.S., Bridgewater, A.J., Young, D.J., “On the determination of copper surface area by reaction with nitrous oxide” Appl, Catal. 7 (1983) 75.
Fujita, S.,Usui, M., Ito, H., Takezawa, N., “Mechanisms of methanol synthesis from carbon dioxide and from carbon monoxide at atmospheric pressure over Cu/ZnO”, J. Catal. 157 (1995) 403.
Fixman, E.M., Abello, M.C., Gorriz, O.F., Arrua, L.A., “Preparation of Cu/SiO2 catalysts with and without tartaric acid as Characterization and evaluation in the methanol partial oxidation”, Appl. Catal. A: Gen. 319 (2007) 111.
Gil, A., Diaz, A., Gandia, L.M., Montes, M., “Influence of the preparation method and the nature of the support on the stability of nickel catalysts”, Appl. Catal. A: Gen. 109 (1994) 167.
Guerreiro, E.D., Gorriz, O.F., Rivarrola, J.B., Arrua, L.A., “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation”, Appl. Catal. A: Gen. 165 (1997) 259.
Hindustan L.L., Indian Patent, No.147090 (1979).
Hoogers. G, Fuel cell technology handbook, (2002).
Horny, C., Renken, A., Kiwi-Minsker, L., “Compact string reactor for autothermal hydrogen production”, Catal. Today 120 (2007) 45.
Houston, D.F., “Rice Hulls” , Rice Chemistry and technology, Chapter 12, Houston, D.F., Eds., American of Association of Cereal Chemistry, St. Paul. Minnessota (1972).
Huang, T.J., Wang, S.W., “Hydrogen production via partial oxidation of methanol over copper-zinc catalysts”, Appl. Catal. 24 (1986) 287.
Huang, T.J., Wang, S.W., “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”,Appl. Catal. 40 (1988) 43.
Ibrahim, D.M., EL-Hemaly, S.A., “Thermal Treatment of Rice-Husk Ash : Effect of Time Firing on Pore Structure and Crystallite Size”, Thermochimica Acta 37 (1980) 347.
Klbag, S.S., Basu, P.K., Bringi, N.V., Indian Patent , No.146570 (1979).
Kohler, M.A., Curry-Hyde, H.E., Hughes, A.E., Sexton, B.A., Cant, N.W., “The Structure of Cu/SiO2 Catalysts Prepared by the Ion-Exchange Technique”, J. Catal. 108 (1987) 323.
Lindström, B., Pettersson, L.J., Govind Menon, P., “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles”, Appl. Catal. A: Gen. 234 (2002) 111.
Liou, T.H., Chang, F.W., “The Nitridation Kinetics of Pyrolyzed RiceHusk”, Ind. Eng. Chem. Res. 35 (1996) 3375.
Liou, T.H., Chang, F.W., Lo, J.J., “Pyrolysis Kinetics of Acid-Leached Rice Husk”, Ind. Eng. Chem. Res. 36 (1997) 568.
Longgaback, J.R., Banner, F., Industrial and Laboratory Pyrolyusis 27 (1976) 476.
Marchi, A.J., Fierro, J.L.G., Santamaría, J., Monzón, A., “Dehydrogenation of Isopropylic Alcohol on Cu/SiO2 Catalyst: a Study of the Activity Evolution and Reactivation of the Catalyst”, Appl. Catal. A: Gen. 142 (1996) 375.
Mile, B.D., Stirling, M.A., Zammitt, Lovell, A., Webb, M., ”The location of nickel oxide and nickel in silica-supported catalysts: Two forms of “NiO” and the assignment of temperature programmed reduction profiles”, J. Catal. 114 (1988) 217.
Murcia-Mascaro´s, S., Navarro, R.M., Go´mez-sainero, L., Costantino, U., Nocchetti, M., Fierro, J.L.G., “Oxidation methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors”, J. Catal. 198 (2001) 338.
Narita, K., Takeyawa, N., Kobayashi, J., Toyoshima, I., “Adsorption of nitrous oxide on metallic copper catalysts”, React. Kinet. Catal. Lett. 19 (1982) 91.
Oetjen, H.F., Schmidt, V.M., Stimming, U., Trila,F., “Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas”, J. Electrochem. Soc. 143 (1996) 3838.
Patel, S., Pant, K.K., ” Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts”, Fuel Pro. Tech. 88 (2007) 825.
Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H.H., “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction”, J. Mol. Catal. A: Chem. 162 (2000a) 275.
Richardson, J.T., Dubus, R.J., ”Crystallite size distributions of sintered nickel catalysts”, J. Catal. 57 (1979) 417.
Riverors, H., Garz, C., “Rice Husks as a Source of High Purity Silica”, J. Master. Sci. 22 (1987) 4665.
Ruettinger, W., Ilinich, O., Farrauto, R.J., “A new generation of water gas shift catalysts for fuel cell applications ”, J. Power Sources 118 (2003) 61.
Sengupta, G., Gupta, D.K., Kundu, M.L., Sen, S.P., “Effect of reduction conditions upon metal area in CuO-ZnO catalyst”, J. Catal. 67 (1981) 223.
Shen, J.P., Song, C., ”Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells”, Catal. Today 77 (2002) 89.
Tsay, M.T., Chang, F.W., “Characterization of Rice Husk Ash-Supported Nickel Catalysts Prepared by Ion Exchange”, Appl. Catal. A: Gen. 203 (2000) 15.
Tsay, M.T., Chang, F.W., “Characterization and Reactivity of RHA-Al2O3 Composite Oxides Supported Nickel Catalysts”, Catal. Commun. 2 (2001) 233.
Turco, M., Bagnasco, G., Cammarano, C., Senese, P., Costantino, U., Sisani, M., “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix”, Appl. Catal. B: Envir. 77 (2007) 46.
Van der Grift, C.J.G., Elberse, P.A., Mulder,A., Geus, J.W., “Preparation of silica-supported copper catalysts by means of deposition- precipitation”, Appl. Catal. 59 (1990a) 275.
Van der Grift, C.J.G., Mulder, A., Geus, J.W., “Characterization of silica-supported copper catalysts by means of temperature - programmed reduction”, Appl. Catal. 60 (1990b) 181.
Van der Grift, C.J.G., Wielers, Mulder,A., Geus, J.W., “The reduction behaviour of silica-supported copper catalysts prepared by deposition - precipitation”, Thermochim. Acta 171 (1990c) 95.
Van der Grift, C.J.G., Wielers, A.F.H., Joghi, B.P.J., Van Beijnum, J., De Boer, M., Versluijs-Helder, M., Geus, J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, J. Catal. 131 (1991) 178.
Van den Oetelaar, L.C.A., Partridge, A., Staple, P.J.A., Flipse, Brongersma, C.F.J., Brongersma, H.H., “A Surface science study of model catalysts. 2. Metal-support interactions in Cu/SiO2 model catalysts”, J. Phys. Chem. B 102 (1998) 9532.
Van Dillen, A.J., Geus, G.W., Hermans, M.A.L., Van der Meijden, J., “Proceedings, 6th international congress on catalysis, London, 1976”, Chem. Soc. 677 (1977)
Velu, S., Suzuki, K., Osaki, T., “Selective production of hydrogen by oxidative steam reforming of methanol over catalysts derived from CuZnAl-layered double hydroxide”, Catal. Lett. 62 (1999) 157.
Velu, S., Suzuki, K., Kapoor, M.P., Ohashi, F., Osaki, T., ”Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47.
Wang, Z., Xi, J., Wang, W., Lu, G., “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts”, J. Mol. Catal. A: Chem. 191 (2003) 123.
Wang, Z., Liu, Q., Yu, J., Wu, T., Wang, G., “Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods”, Appl. Catal. A: Gen. 239 (2003a) 87.
Wang, Z., Wang, W., Lu, G., “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, Int. J. Hydrogen Energy 28 (2003b) 151.
Yoshida, Onishi, S.Y., Kitagishi, K., “Chemical Forms, Mobility and Depostion of Silicon in Rice Plant”, Soil Science and Plant Nutrition 8 (1962) 15.
Yu. X., Tu, S.T., Wang. Z.,Qi, Y., ”Development of a microchannel reactor concerning steam reforming of methanol”, Chem. Eng. J. 116 (2006) 123.
Zhang, R., Sun,Y., Peng, S., “Dehydrogenation of methanol to methyl formate over CuO-SiO2 gel catalyst”, React. Kinet. Catal. Lett. 67 (1999) 95.
Zhang, X.R., Wang, L.C., Yao, C.Z., Cao, Y.Y., Dai, W.L., He, H.Y., Fan, K.N., ”A highly effient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol”, Catal. Lett. 12 (2005) 3.
Handbook of The Elements and Native Oxides, 1999 XPS International, Inc.
吳榮宗, “工業觸媒概論”增訂版, 興國出版社 (1980).
李秉傑, 邱宏明, 王亦凱合譯 “非均勻系催化原理與應用”, 渤海堂文化事業有限公司 (1988) .
涂耀仁, 陳郁文, “銅觸媒在醇類脫氫反應之應用”, 觸媒與製程, 2 (1) (1993) 24.
姚品全, “淺談銅觸媒”, 觸媒與製程, 8(2), (2000) 47.
黃鎮江, “燃料電池”, 全華科技圖書股份有限公司 (2003)。
衣寶廉編著, “燃料電池-原理與應用”, 五南圖書出版公司 (2005)。
楊盛行, 林正芳, 王繼國編著, “廢棄物處理與再利用”, 國立空中大學(2003)。
黃士益, “以稻殼灰分沈澱固著製備擔體銅觸媒之反應性研究” , 國立中央大學化學工程研究所碩士論文 (2003).
邱筱雯, “氧化矽擔載銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究” , 國立中央大學化學工程研究所碩士論文 (2007).
劉恭益, “氧化矽-氧化鋅複合擔體銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究” , 國立中央大學化學工程研究所碩士論文 (2007).
指導教授 張奉文(Feg-Wen Chang) 審核日期 2008-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明