博碩士論文 953204062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:164 、訪客IP:18.221.15.15
姓名 侯宏儒(Hung-ju Hou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
(Spherical Crystallization for Lean Solid-Dose Manufacturing by Initial Solvent Screening: The Study of Cimetidine)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 藥物的研究與發展是一個很費時與昂貴的過程。平均來說,一個新藥物從在實驗室研發到真正上市大約需要500到880億美元,而且整個過程需要約15年。在本論文中,三個重要的研究方向被用來增進整個藥物研發的效率。首先,我們建立了一個有關西咪替丁(cimetidine)結晶的資料庫。利用23種有機溶劑篩選的方式,有關西咪替丁溶解度(solubility)、多晶形(polymorph)、晶體外貌(crystal habit)、以及結晶度(crystallinity)的資料被完整收集。一種概略但簡單方便且只需要少量樣品的篩選方法也將在本論文中介紹給大家。第二,我們利用球形結晶方法代替傳統濕式造粒,減少固體藥劑製成步驟。此法可被用來增加藥物的流動性並減少固體藥劑製成的時間與花費。第三部分,利用多晶形表(Form Space),來找出有可能形成球形結晶的組合。由於一般的球形結晶選取溶劑的方法是未知,所以本論文利用有系統並方便的方法找出有可能的組合。因為西咪替丁具已經有很多的研究文獻,我們選擇它當作我們的活性藥物成分(active pharmaceutical ingredient, API)。但是本論文中的研究方法,也可以用在其他的活性藥物成分、候選藥物或是簡單的有機分子上。
摘要(英) Drug discovery and development process is a long and expensive process. The average cost of a new drug from laboratory to market is about US$500 to US$880 million and it takes ten to fifteen years to complete all the processes. Three important studies in this thesis were performed to improve the efficiency of the discovery and development process. Firstly, a useful engineering data bank of solubility, polymorphism, crystal habits and crystallinity by solvent screening for cimetidine would be established and a robust, miniature solvent screening method would be introduced. Secondly, a spherical crystallization technique replaces the traditional wet granulation for lean solid-dose manufacturing. This technique could be used to increase the flowability of active pharmaceutical ingredient (API) and save the money and time of solid-dose manufacturing. Thirdly, we used the Form Space to find the possible three-solvent combinations for spherical crystallization. Choosing the possible three-solvent combinations method for spherical crystallization is not clear. In this thesis, the Form Space was used to make the search of the possible three-solvent combinations more systematic and easy. Cimetidine was chosen as the active pharmaceutical ingredient because of its abundance in literatures. But the investigation methods in this thesis could also be applied to some other APIs or drug candidates or simple organic materials.
關鍵字(中) ★ 多晶形表
★ 初始溶劑篩選
★ 晶貌
★ 多晶形
★ 結晶度
★ 溶解度
★ 球形結晶
★ 西咪替丁
關鍵字(英) ★ form space
★ initial solvent screening
★ polymorph
★ solubility
★ crystal habit
★ spherical crystallization
★ cimetidine
★ crystallinity
論文目次 Table of Contents
摘要..............................................................I
ABSTRACT..........................................................II
ACKNOWLEDGMENTS ..................................................III
LIST OF TABLES ...................................................VIII
LIST OF FIGURES ..................................................IX
CHAPTER 1 EXECUTIVE SUMMARY.................................1
1.1 INTRODUCTION..............................................1
1.2 BRIEF INTRODUCTION OF CIMETIDINE..........................5
1.3 CONCEPTUAL FRAMEWORK......................................6
1.4 REFERENCES................................................8
CHAPTER 2 ANALYTICAL INSTRUMENTS............................12
2.1 INTRODUCTION..............................................12
2.2 MICROSCOPIC METHODS.......................................14
2.1.1 Optical Microscopy (OM)...................................14
2.1.2 Low Vacuum Scanning Electron Microscopy (LVSEM)...........16
2.1 SPECTROSCOPIC IDENTIFICATION..............................19
2.1.1 Fourier Transform Infrared (FT-IR) Spectroscopy...........19
2.2 CRYSTALLOGRAPHY...........................................21
2.2.1 Powder X-ray Diffractometry (PXRD)........................21
2.3 THERMAL ANALYSIS..........................................24
2.3.1 Differential scanning calorimetry (DSC)...................24
2.4 CONCLUSIONS...............................................27
2.5 REFERENCES................................................28
CHAPTER 3 SOLUBILITY, CRYSTAL HABITS, POLYMORPHISM, AND
CRYSTALLINITY OF CIMETIDINE BY INITIAL SOLVENT SCREENING..........33
3.1 INTRODUCTION..............................................33
3.1.1 Solubility................................................35
3.1.2 Crystal habit.............................................36
3.1.3 Polymorphism..............................................37
3.1.4 Crystallinity.............................................39
3.2 MATERIALS.................................................41
3.2.1 Cimetidine................................................41
3.2.2 Solvents..................................................45
3.3 EXPERIMENTS METHODS.......................................49
3.3.1 Solubility test...........................................49
3.4 INSTRUMENTATION...........................................51
3.4.1 Optical Microscopy (OM)...................................51
3.4.2 Fourier Transform Infrared (FT-IR) Spectroscopy...........51
3.4.3 Differential Scanning Calorimetry (DSC)...................51
3.4.4 Powder X-ray Diffractometry (PXRD)........................52
3.5 RESULTS AND DISCUSSION....................................53
3.5.1 Solubility................................................53
3.5.2 Crystal Habits............................................61
3.5.3 Polymorphism..............................................64
3.5.4 Crystallinity.............................................68
3.6 CONCLUSIONS...............................................70
3.7 REFERENCES................................................71
CHAPTER 4 SPHERICAL CRYSTALLIZATION OF CIMETIDINE...........80
4.1 INTRODUCTION..............................................80
4.2 MATERIALS.................................................89
4.2.1 Drug......................................................89
4.2.2 Solvents..................................................90
4.3 EXPERIMENTAL METHODS......................................93
4.4 INSTRUMENTATION...........................................97
4.4.1 Fourier Transform Infrared (FT-IR) Spectroscopy...........97
4.4.2 Powder X-ray Diffractometry (PXRD)........................97
4.4.3 Low Vacuum Scanning Electron Microscopy (LVSEM)...........98
4.4.4 Orbital shaker............................................98
4.4.5 Digital Camera............................................98
4.5 RESULTS AND DISCUSSION....................................99
4.5.1 The results of combinations of spherical crystallization..99
4.5.2 The shape and form of the spherical agglomerates..........104
4.5.3 The micromeritic and mechanical properties of agglomerated
crystals..................................................107
4.5.4 SEM photomicrographs of spherical surface and inside......107
4.6 CONCLUSION................................................110
4.7 REFERENCES................................................111
CHAPTER 5 CONCLUSIONS AND FUTURE WORK.......................118
5.1 CONCLUSIONS...............................................118
5.2 FUTURE WORK...............................................119
參考文獻 C. Han, and B. Wang, “Factors That Impact The Developability of Drug Candidates: An Overview,” Chapter 1 in Drug Delivery: Principles and Applications, edited by B. Wang, T. Siahaan, and R. Soltero, (John Wiley and Sons, Inc., New York, USA, 2005), pp. 1-5.
K. Sweeny, “Technology Trends in Drug Discovery and Development: Implications for the Development of the Pharmaceutical Industry in Australia,” Draft Working Paper No. 3, Pharmaceutical Industry Project, CSES, Victoria University, Melbourne, pp. 1-29 (2002).
http://www.msd.com.hk/health_info/drug_education/e_ddp_introduction.html
M. Brigell, C. J. Dong, S. Rosolen, and R. Tzekov, “An Overview of Drug Development with Special Emphasis on The Role of Visual Electrophysiological Testing,” Documenta Ophthalmologica., 110(1), 3-13 (2005).
O. Almarsson, and M. J. Zaworotko, “Crystal Engineering of the Composition of Pharmaceutical Phases. Do Pharmaceutical Co-crystals Present a New Path to Improved Medicines? ” Chem. Commun.,17, 1889-1896 (2004)
J. Katta, and Å .C. Rasmuson, “Spherical Crystallization of Benzoic Acid,” Int. J. Pharmaceut., 348(1), 61-69 (2008).
J. Berstein, R. J. Davey, and H. Jan-Olav, “Concomitant Polymorphs,” Angew.
Chem. Int. Ed., 38(23), 3440-3461 (1999).
T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T. Mitani, “Improved Lifetime of an OLED Using Aluminum (III) Tris (8-hydroxyquinolate),” Sci. Tech. Adv. Matt., 5(3), 331-337 (2004).
A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale Rapid Melting and Crystallization of Semiconductor Thin Films,” Nanoletters, 5(10), 1924-1930 (2005).
K.J. Kim, and H.S. Kim, “Coating of Energetic Materials Using Crystallization,” Chem. Eng. Technol., 28(8), 946 -951 (2005).
T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
S. Gracin, and A. C. Rasmuson, “Solubility of Phenylacetic Acid, p-Hydroxyphenylacetic acid, p-Aminophenylacetic Acid, p-Hydroxybenzoic acid, and Ibuprofen in Pure Solvents,” J. Chem. Eng. Data., 47(6), 1379-1383 (2002).
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent Effects on the Crystallization Behavior of Milk Fat Fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000).
W. L. McCabe, J. C. Smith, and P. Harriott, “Crystallization”, Chapter 27 in Unit Operations of Chemical Engineering.” Sixth edition, Mc Graw-Hill, pp902-942,(2001)
A. Goldszal, and J. Bousquet, “Wet Agglomeration of Powders: From Physics toward Process Optimization,” Pow. Tech., 117(3), 221-231 (2001).
T. Lee, and F. B. Hsu, “A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 33(11), 1273-1284 (2007).
T. Lee, H. J. Hou, H. Y. Hsieh, Y. C. Su, Y. W. Wang, and F. B. Hsu, “The Prediction of the Dissolution Rate Constant by Mixing Rules: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 34(5) , 522-535 (2008).
D. Amaro-Gonza´lez, and B. Biscans, “Spherical Agglomeration during Crystallization of an Active Pharmaceutical Ingredient,” Powder Technol., 128(2), 188-194 (2002).
M. Maghsoodi, O. Taghizadeh, G. P. Martin, and A. Nokhodchi, “Particle Design of Naproxen-Disintegrant Agglomerates for Direct Compression by a Crystallo-co-Agglomeration Technique,” Int. J. Pharm., 351(1), 45-54 (2007).
Y. Kawashima, M. Okumura, and A. H. Takenaka, “Spherical Crystallization: Direct Spherical Agglomeration of Salicylic Acid Crystals during Crystallization,” Science, 216(4550), 1127-1128 (1982).
Y. Kawashima, T. Handa, H. Takeuchi, M. Okumura, H. Katou, and O. Nagata, “Crystal Modification of Phenytoin with Polyethylene Glycol for Improving Mechanical Strength Dissolution Rate and Bioavailability by a Spherical Crystallization Technique,” Chem. Pharm. Bull., 34(8), 3376-3383 (1986).
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, T. Hino, and T. Niwa, “Particle Design of Tolbutamide by Spherical Crystallization Technique. V. Improvement of Dissolution and Bioavailability of Direct Compressed Tablets Prepared Using Tolbutamide Agglomerated Crystals,” Chem. Pharm. Bull., 40(11), 3030-3035 (1992).
J. Katta, and Å .C. Rasmuson, “Spherical Crystallization of Benzoic Acid,” Int. J. Pharmaceut., 348(1), 61-69 (2008).
A. Ribardie`re, P. Tchoreloff, G. Couarraze, and F. Puisieux, “Modification of Ketoprofen Bead Structure Produced by the Spherical Crystallization Technique with a Two-solvent System,” Int. J. Pharm., 144(2), 195-207 (1996).
J. Akbuga, “Preparation and Evaluation of Controlled Release Furosemide Microspheres by Spherical Crystallization,” Int. J. Pharm., 53(22), 99-105 (1989).
T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R, S)-(±)-sodium Ibuprofen Dihydrate,” Pharm. Tech., 31(6), 72-87 (2007).
http://acswebcontent.acs.org/landmarks/tagamet/tagamet.html
T. Lee, and F. B. Hsu, “Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 33(11), 1273-1284 (2007).
T. L. Threlfall, “Analysis of Organic Polymorphs: A Review,” Analyst, 120(10), 2435-2460 (1995).
L. Yu, S. M. Reutzil, and G. A. Stephenson, “Physical Characterization of Polymorphic Drugs: and Integrated Characterization Strategy,” PSTT, 1(3), 118-127 (1998).
R. Hilifiker, F. Blatter, and M. von Raumer, “Relevance of Solid-State Properties for Pharmaceutical Products,” Chapter 1 in Polymorphism in the Pharmaceutical Industry, (WILEY-VCH Verlag GmbH & Co. KGaA, Berlin, Germany, 2006), pp. 1-19.
H. G. Brittain, S. J. Bogdanowich, D. E. Bugay, J. De Vincentis, G. Lewen, and A. W. Newman, “Physical Characterization of Pharmaceutical Solids,” Pharm. Res., 8(8), 963-973 (1991).
D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterization of Polymorphs and Solvates,” Thermochim. Acta, 248(2), 1-59 (1995).
D. J. W. Grant, “Theory and Origin of Polymorphism,” Chapter 1 in Polymorphism in Pharmaceutical Solids, (Marcel Dekker, Inc., New York, USA, 1999), pp. 1-33.
T. Lee, and M. S. Lin, “Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum (III) (Alq3) by Crystal Engineering,” Cryst. Growth Des., 7(9), 1803-1810 (2007).
G. Nichols, and C. S. Frampton, “Physicochemical Characterization of the Orthorhombic Polymorph of Paracetamol Crystallized from Solution,” J. Pharm. Sci., 87(6), 684-693 (1998).
El-Khateeb, Sonia Z., Amer, Sawsan M., Razek, Sawsan A. Abdel, and M. A. Mohamed, “Stability-Indicating Methods for the Determination of Cimetidine Using Derivative and Fourier-Transform Infrared Spectrophotometry,” Spectro. Lett., 31(7), 1415-1429 (1998).
D. J. W. Grant, “Vibrational Spectroscopic Methods in Pharmaceutical Solid-state Characterization,” Chapter 5 in Polymorphism in Pharmaceutical Solids, (Marcel Dekker, Inc., New York, USA, 1999), pp. 95-138.
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, and W. Brütting, ”Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003).
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling Operation,” Chapter 5 in Powder Technology Hand Book, 2nd ed, (Marcel Dekker Inc., New York, USA, 1997), pp. 720-730.
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental Properties of Powder Beds,” Chapter 3 in Powder Technology Hand Book, 2nd ed, (Marcel Dekker, New York, USA, 1997), pp. 413-423.
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy”, Chapter 21 in Principles of Instrumental Analysis, Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 549-553.
R. E. Reed-hill, “Analytical Methods,” Chapter 2 in Physical Metallurgy Principles, Third Edition, (PWS Publishing Company, Boston, USA, 1994), pp. 53-60.
C. S. Colley, S. G. Kazarian, P. D. Weinberg, and M. J. Lever, “Spectroscopic Imaging of Arteries and Atherosclerotic Plaques,” Biopolymers, 74(4), 328-335 (2004).
C. Petibois, and G. Déléris, “Chemical Mapping of Tumor Progression by FT-IR Imaging: Towards Molecular Histopathology,” Trends Biotechnol., 24(10), 455-462 (2006).
O. S. Fleming, K. L. A. Chan, and S. G. Kazarian, “FT-IR Imaging and Raman Microscopic Study of Poly(ethylene terephthalate) Film Processed with Supercritical CO2,” Vib. Spectrosc., 35(1-2), 3-7 (2004).
T. H. Lee, and S. Y. Lin, “Microspectroscopic FT-IR Mapping System as a Tool to Assess Blend Homogeneity of Drug Excipient Mixtures,” Eur. J. Pharm. Sci., 23(2), 117-122 (2004).
K. L. A. Chan, and S. G. Kazarian, “Fourier Transform Infrared Imaging for High-Throughput Analysis of Pharmaceutical Formulations,” J. Comb. Chem., 7(2), 185-189 (2005).
F. Rouessac, and A. Rouessac, “Chemical Analysis-modern Instrumentation Methods and Techniques,” Chapter 10 in Infrared Apectroscopy, 1st ed, (John Willy & Sons, chichester, England, 2001), pp. 170-173.
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Components of Optical Instrument,” Chapter 7 in Principles of Instrumental Analysis, 5th ed, (Thomson Learning, Mississippi, USA, 2001), pp. 182-183.
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Hornedo, “General Principles of Pharmaceutical Solid Polymorphism : a Supramolecular Perspective,” Adv. Drug Deliv. Rev., 56(3), 241-274 (2004).
B. E. Padden, M. T. Zell, Z. Dong, S. A. Schroeder, D. J. W. Grant, and E. J. Munson, “Comparison of Solid-state 13C NMR Spectroscopy and Powder X-ray Diffraction for Analyzing Mixtures of Polymorphs of Neotame,” Anal. Chem., 71(16), 3325-3331 (1999).
D. Giron, “Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry,” J. Therm. Anal. Calorim., 68(2), 335-357 (2001).
R. Hilfiker, F. Blatter, and M. V. Raumer,: “Characterization of Polymorphic Systems Using Thermal Analysis,” Chapter 3 in Polymorphism in Pharmaceutical Industry, Edited by Rolf Hilfiker, (WILEY-VCH., Berlin, Germany, 2006), pp.43-79.
A. J. Pasztor, “Thermal Analysis Techniques,” Chapter 50 in Handbook of Instrumental Techniques for Analytical Chemistry, (F. A. Settle, Prentice Hall PTR, New Jersey, USA, 1997), pp. 909-917.
P. J. Haines, and F. W. Wilburn, “Differential Thermal Analysis and Differential Scanning Calorimetry,” Chapter 3 in Thermal Methods of Analysis-principles, 5th ed, Applications and Problems, Peter J. Haines, (Blackie Academic and Professional, New York, USA, 1995), pp. 63- 89.
G. W. Smith, “Precipitation Kinetics in an Air-cooled Aluminum Alloy: A Comparison of Scanning and Isothermal Calorimetry Measurement Methods,” Thermochim. Acta, 313(1), 27-36 (1998).
B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo, “General principles of pharmaceutical solid polymorphism a supramolecular perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004).
K. Urakami, Y. Shono, A. Higashi, K. Umemoto, and M. Godo, “A novel method for estimation of transition temperature for polymorphic pairs in pharmaceuticals using heat of solution and solubility data,” Chem. Pharm. Bull., 50(2), 263-267 (2002).
T. L. Therlfall, “Analysis of Organic Polymorphs a Review,” Analyst, 120(2), 2435-2460 (1995).
T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T. Mitani, “Improved Lifetime of an OLED Using Aluminum (III) Tris (8-hydroxyquinolate),” Sci. Tech. Adv. Matt., 5(3), 331-337 (2004).
A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale Rapid Melting and Crystallization of Semiconductor Thin Films,” Nanoletters, 5(10), 1924-1930 (2005).
K.J. Kim, and H.S. Kim, “Coating of Energetic Materials Using Crystallization,” Chem. Eng. Technol., 28(8), 946 -951 (2005).
T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
S. Gracin, and A. C. Rasmuson, “Solubility of Phenylacetic Acid, p-Hydroxyphenylacetic acid, p-Aminophenylacetic Acid, p-Hydroxybenzoic acid, and Ibuprofen in Pure Solvents,” J. Chem. Eng. Data., 47(6), 1379-1383 (2002).
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent Effects on the Crystallization Behavior of Milk Fat Fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000).
S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-throughput Crystallization: Polymorphs, Salts Co-Crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004).
E. Tedesco, D. Giron, and S. Pfeffer, "Crystal Structure Elucidation and Morphology Study of Pharmaceuticals in Development," Cryst. Eng. Comm., 4(67), 393-400 (2002).
C. K. Chen, and A. K. Singh, “A “Bottom-Up” Approach to Process Development: Application of Physicochemical Properties of Reaction Products toward the Development of Direct-Drop Processes,” Org. Process Res. Dev., 5(5), 508-513 (2001).
J. L. Hilden, C. E. Ryeyes, M. J. Kelm, j. S. Tan, J. G. Stowell, and K. R. Morris, “Capillary Precipitation of a Highly Polymorphic Organic Compound,” Cryst. Growth. Des., 3(6), 921-926 (2003).
W. W. Wang, and Y. J. Zhu, “Synthesis of PbCrO4 and Pb2CrO5 Rods via a Microwave-assisted Ionic Liquid Methods,” Cryst. Growth. Des., 5(2), 505-507 (2005).
D. Braga, and F. Grepioni, “Making Crystals from Crystals: a Green Route to Crystal Engineering and Polymorphism,” Chem. Commun. 7(29), 3635-3645 (2005).
J. E. Aber, S. Arnold, and B. A. Garetz, “Strong dc Electric Field Applied to Supersaturated Aqueous Glycine Solution Induces Nucleation of the γ Polymorph,” Phys. Rev. Lett., 94(14), 145-503 (2005).
N. Al-Zoubi, and S. Malamataris, “Effects of Initial Concentration and Seeding Procedure on Crystallisation of Orthorhombic Paracetamol from Ethanolic Solution,” Int. J.l Pharm., 260(1),123-135 (2003)
M. Lang, A. L. Grzesiak, and A. J. Matzgar, “The Use of Polymer Heteronuclei for Crystalline Polymorph Selection,” J. Am. Chem. Soc., 124(50), 14834-14835 (2002).
A. M. Garcia, and E. S. Ghaly, “Preliminary Spherical Agglomerates of Water Soluble drug Using Natural Polymer and Cross-Linking Technique,” J. Control. Relea., 40(3), 179-186 (1996).
J. Burke, “Solubility Parameters: Theory and Application,” AIC book and paper group annual, 3, 13-58 (1984).
H. G. Brittain, and D. J. W. Grant, “Effect of Polymorphism” Chapter 7 in Polymorphism in Pharmaceutical Solids, Edited by H. G. Brttain, (Marcel Dekker, New York, 1999), pp.279-330.
K. Srinivasan, S. Anbukumar, and P. Ramasamy, “Mutual Solubility and Metastable Zone Width of NH4H2PO4-KH2PO4 Mixed Solutions and Growth of Mixed Crystals,” J. Cryst. Growth, 151(1), 226-229 (1995).
S. Teychene´, J. M. Autret, and B. Biscans, “Crystallization of Eflucimibe Drug in a Solvent Mixture: Effects of Process Conditions on Polymorphism,” Cryst. Growth. Des., 4(5), 971-977 (2004).
C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997).
L. C. Garzόn, and F. Martínez, “Temperature Dependence of Solubility for Ibuprofen in Some Organic and Aqueous Solvents,” J. Sol. Chem., 33(11), 1379-1395 (2004).
D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals”, AlChE J., 44(11), 2501-2514 (1998).
J. W. Mullin, “Crystal Habit Modification,” Chapter 6 in Crystallization, 3rd edition, (Butterworth-Heinemann, Oxford, UK, 1997), pp.248-250.
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage from Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. Gayot, and S. Martelli, “Influence of Crystal Habit on the Compression and Densification Mechanism of Ibuprofen,” J. Crys. Growth, 243(2), 345-355 (2002).
N. Rasenack, and B. W. Müller, “Crystal Habit and Tabletting Behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002).
M. Lahav, and L. Leiserowitz, “The Effect of Solvent on Crystal Growth and Crystal Habit,” Chem. Eng. Sci., 56(7), 2245-2253 (2001).
R. Hilfiker, F. Blatter, and M. V. Raumer,: “Relevance of Solid-state Properties for Pharmaceutical Products,” Chapter 1 in Polymorphism in Pharmaceutical Industry, Edited by Rolf Hilfiker, (WILEY-VCH., Berlin, Germany, 2006), pp.1-19.
B. Rodrıguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. Rodrıguez-Hornedo, “General Principles of Pharmaceutical Solid Polymorphism: a Supramolecular Perspective,” Advanced Drug Del Rev., 56(2), 241-274 (2004).
J. Bernstein, R. J. Davey, and J-O Henck, “Concomitant Polymorphs,” Angew. Chem. Int. Ed., 38(23), 3440-3461 (1999).
P.T Cardew, and R. J. Davey, “The Kinetics of Solvent-mediated Phase Transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985).
K. Pack, J. M. B. Evans, and A. S. Myerson, “Determination of Solubility of Ppolymorphs Using Differential Scanning Calorimetry,” Cryst. Growth Des., 3(6), 991-995 (2003).
D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterisation of Polymorphs and Solvates,” Thermochem. Acta., 248(2), l-59 (1995).
K. Sato, “Polymorphic Transformations in Crystal Growth” J. Phys. D: Appl. Phys., 26(8B), 77-84 (1993).
S. Kim, B. Lotz, M. Lindrud, K. Girard, T. Moore, K. Nagarajan, M. Alvarez, T. Lee, F. Nikfar, M. Davidovich, S. Srivastava, and S. Kiang, “Control of the Particle Properties of a Drug Substance by Crystallization Engineering and the Effect on Drug Product Formulation,” Org. Pro. Res. Dev., 9(6), 911-922 (2005).
S. Datta, and D. J. W. Grant, “Crystal Structures of Drugs: Advances in Determination, Prediction and Engineering,” Nat. Rev. Drug. Discov., 3(1), 42-57 (2004).
W. H. Decamp, “The Impact of Polymorphism on Drug Development: A Regulator’s Viewpoint,” Am. Pharm. Rev., 4(3), 70-77 (2001).
R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-Integrated Approach from High-throughput Screening to Crystallization Optimization,” J. Therm. Anal. Calorim., 73(2), 429-440 (2003).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30(10), 72-92 (2006).
D. Gao, and J. H. Rytting, “Use of Solution Calorimetry to Determine the Extent of Crystallinity of Drugs and Excipients,” Int. J. Pharm., 151(2), 183-192 (1997).
T. Suzuki, and H. Nakagami, “Effect of Crystallinity of Microcrystalline Cellulose on the Compactability and Dissolution of Tablets,” Eur. J. Pharm. Biopharm., 47(3), 225-230 (1999).
P. J. Haines, “Thermal Methods of Analysis – Principles, Applications and Problems,” J. Therm. Anal. Calorim., 45(1-2), 335-336 (1995).
A. Buttafavaa, G. Consolati, L. Di Landroc and M. Marianid, “γ-Irradiation Effects on Polyethylene Terephthalate Studied by Positron Annihilation Lifetime Spectroscopy,” Polymer, 43(26), 7477-7481 (2002).
G. Karpińska, J. Cz. Dobrowolski, and A. P. Mazurek, “Conformation and Tautomerism of the Cimetidine Molecule: A Theoretical Study,” J. Molecular Structure, 645(1), 37-43 (2003).
C. Chen, and P. A. Crafts “Correlation and Prediction of Drug Molecule Solubility in Mixed Solvent Systems with the Nonrandom Two-Liquid Segment Activity Coefficient (NRTL-SAC) Model,” Ind. Eng. Chem. Res., 45(13), 4816-4824 (2006).
R.A Sams, D.F Gerken, T.M Dyke, S.M Reed, and S.M Ashcraft, “Pharmacokinetics of Intravenous and Intragastric Cimetidine in Horses I. Effects of Intravenous Cimetidine on Pharmacokinetics of Intravenous Phenylbutazone,” J. Vet. Pharm. Thera., 20(5), 355-361 (1997).
A. Somogyi, and R. Gugler, “Clinical Pharmacokinetics of Cimetidine,” Clin. Pharmacokinet., 8(6), 463-495 (1983).
A. Avdeef, and CM. Berger, “pH-metric Solubility: 3. Dissolution Titration Template Method for Solubility Determination,” Eur. J. Pharm. Sci., 14(4), 281-291 (2001).
M. Shibata, H. Kokubo, K. Morimoto, K. Morisaka, T. Ishida, and M. Inoue, “X-ray Structural Studies and Physicochemical Properties of Cimetidine Polymorphism,” J. Pharm. Sci., 72(12), 436-1442 (1982).
M. Baranska, and L.M. Proniewicz, “FT-IR and FT-Raman Spectra of Cimetidine and Its Metallocomplexes,” J. Mol. Struct., 511(1), 153-162 (1999).
B Hegedus, and S Gorog, “The Polymorphism of Cimetidine” J. Pharm. Biomed. Anal., 3(4), 303-13 (1985).
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
N. G. Anderson, “Solvent Selection,” Chapter 4 in Practical Process Research & Development, (Academic Press, New York, USA, 2000), pp.81-111.
R. Hilfiker, F. Blatter, and M. V. Raumer,: “Characterization of Polymorphic Systems Using Thermal Analysis,” Chapter 3 in Polymorphism in Pharmaceutical Industry, Edited by Rolf Hilfiker, (WILEY-VCH., Berlin, Germany, 2006), pp.43-79.
M. L. Peterson, S. L. Morissette, C. McNulty, A. Goldsweig, P. Shaw, M LeQuesne, J. Monagle, N. Encina, J. Marchionna, A. Johnson, J. G. Zugasti, A. V. Lemmo, S. J. Ellis, M. J. Cima, and Ö. Almarsson, “Iterative High-throughput Polymorphism Studies on Acetaminophen and an Experimentally Derived Structure for Form III,” J. Am. Chem. Soc., 124(37), 10958-10959 (2002).
T. Togkalidou, R. D. Braatz, B. K. Johnson, O. Davidson, and A. Andrews, “Experimental Design and Inferential Modeling in Pharmaceutical Crystallization,” AIChE Journal, 47(1), 160-168 (2001).
S. Sudo, K. Sato, and Y. Harano, “Growth and Solvent-mediated Phase Transition of Cimetidine Polymorphic Forms A and B,” J. Chem. Eng. Japan, 24(5), 628-632 (1991).
H. G. Brittain, and D. J. W. Grant, “Methods for the Characterization of Polymorphs and Solvates,” Chapter 6 in Polymorphism in Pharmaceutical Solids, Edited by H. G. Brattain, (Marcel Dekker, New York, USA, 1999), pp.227-278.
W. A. Bueno, and E. G. Sobrinho, “Hydrogen Bonds in the Cimetidine Molecule,” Spectrochimica Acta, 51A(2), 287-292 (1995).
S. Z. El-Khateeb, S. M. Amer, S. A. A. Razek, and M. M. Amer, “Stability-indicating Methods for the Determination of Cimetidine Using Derivative and Fourier-Transform Infrared Spectrophotometry,” Spectro. Lett., 31(7), 1415-1429 (1998).
W. N. Richmond, P. W. Faguy, and S. C. Weibel, “An In Situ Infrared Spectroscopic Study of Imidazole Films on Copper Electrodes,” J. Electroanalytical Chem., 448(2), 237-244 (1998).
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 in Introduction to Spectroscopy (Thomson Learning, Mississippi, USA, 2001) PP. 13-101.
N. A. Lewis, “A Tracking Tool for Lean Solid-Dose Manufacturing,” Pharm. Tech., 30(10), 94-108 (2006).
J. Katta, and Å .C. Rasmuson, “Spherical Crystallization of Benzoic Acid,” Int. J. Pharmaceut., 348(1), 61-69 (2008).
P. D. Martino, R. D. Cristofaro, C. Barthe´le´my, E. Joiris, G. P. Filippo, and M. Sante, ” Improved Compression Properties of Propyphenazone Spherical Crystals,” Int. J. Pharm., 197(1), 95-106 (2000).
T. Lee, and F. B. Hsu, “A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 33(11), 1273-1284, 2007.
T. Lee, H. J. Hou, H. Y. Hsieh, Y. C. Su, Y. W. Wang, and F. B. Hsu, “The Prediction of the Dissolution Rate Constant by Mixing Rules: The Study of Acetaminophen Batches,” Drug Dev. Ind. Pharm., 34(5), 522-535 (2008).
D. Amaro-Gonza´lez, and B. Biscans, “Spherical Agglomeration during Crystallization of an Active Pharmaceutical Ingredient,” Powder Technol., 128(2), 188-194 (2002).
M. Maghsoodi, O. Taghizadeh, G. P. Martin, and A. Nokhodchi, “Particle Design of Naproxen-disintegrant Agglomerates for Direct Compression by a Crystallo-co-Agglomeration Technique,” Int. J. Pharm., 351(1), 45-54 (2007).
Y. Kawahima, and C.E. Capes, “An Experimental Study of the Kinetics of Spherical Agglomeration in a Stirred Vessel,” Powder Technol. 10(1), 85-92 (1974).
Y. Kawashima, M. Okumura, and A. H. Takenaka, “Spherical Crystallization: Direct Spherical Agglomeration of Salicylic Acid Crystals during Crystallization,” Science, 216(4550), 1127-1128 (1982).
Y. Kawashima, T. Handa, H. Takeuchi, M. Okumura, H. Katou, and O. Nagata, “Crystal Modification of Phenytoin with Polyethylene Glycol for Improving Mechanical Strength Dissolution Rate and Bioavailability by a Spherical Crystallization Technique,” Chem. Pharm. Bull., 34(8), 3376-3383 (1986).
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, T. Hino, and T. Niwa, “Particle Design of Tolbutamide by Spherical Crystallization Technique. V. Improvement of Dissolution and Bioavailability of Direct Compressed Tablets Prepared Using Tolbutamide Agglomerated Crystals,” Chem. Pharm. Bull., 40(11), 3030-3035 (1992).
A. Ribardie`re, P. Tchoreloff, G. Couarraze, and F. Puisieux, “Modification of Ketoprofen Bead Structure Produced by the Spherical Crystallization Technique with a Two-solvent System,” Int. J. Pharm., 144(2), 195-207 (1996).
J. Akbuga, “Preparation and Evaluation of Controlled Release Furosemide Microspheres by Spherical Crystallization,” Int. J. Pharm., 53(22), 99-105 (1989).
A. Y. Huang, and J. C. Berg, “Gelation of Liquid Bridges in Spherical Agglomeration,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 215(1-3), 241-252 (2003).
A. H. L. Chow, and M. W. M. Leung, “A Study of the Mechanisms of Wet Spherical Agglomeration of Pharmaceutical Powders,” Drug Dev. Ind. Pharm., 22(4), 357-371 (1996).
U. Teipel, T. Heintz, and H. H. Krause, “Crystallization of Spherical Ammonium Dinitramide (ADN) Particles,” Propellants, Explosives, Pyrotechnics, 25(2), 81-85 (2000).
A. S. Utada, L. Y. Chu, A. Fernandez-Nieves, D. R. Link, C. Holtze, and D. A. Weitz, “Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics,” MRS Bulletin., 32(4), 702-708 (2007).
P. Di Martino, C. Barthe´ le´my, F. Piva, E. Joiris, G. F. Palmieri, and S. Martelli, “Improved Dissolution Behavior of Fenbufen by Spherical Crystallization,” Drug Dev. Ind. Pharm., 25(10), 1073-1081 (1999).
Y. Kawashima, M. Naito, S. Y. Lin, and H. Takenaka, “An Experimental Study of the Kinetics of the Spherical Crystallization of Aylline Sodium Theophylline Monohydrate,” Powder Technol., 34(2), 255-260 (1983).
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
A. R. Paradkar, A. P. Pawar, J. K. Chordiya, V. B. Patil, and A. R. Ketkar, “Spherical Crystallization of Celecoxib,” Drug Dev. Ind. Pharm., 28(10), 1213-1220 (2002).
Y. Kawashima, T. Niwa, H. Takeuchi, T. Hino, Y. Itoh, and S. Furuyama, “Characterization of Polymorphs of Tranilast Anhydrate and Tranilast Monohydrate when Crystallized by Two Solvent Change Spherical Crystallization Technique, ” J. Pharm. Sci., 80(5), 472-478 (1991).
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, and T. Niwa, “Particle Design of Tolbutamide by the Spherical Crystallization Technique. II. Factors Causing Polymorphism of Tolbutamide Spherical Agglomerates,” Chem. Pharm. Bull., 37(8), 2183-2187 (1989).
T. Lee, and S. T. Hung, “Cocktail-Solvent Screening to Enhancement Solubility, Increase Crystal Yield, and Induce Polymorphs,” Pharm. Tech., 32(1), 76-95 (2008).
N. Blagden, R. J. Davey, H. F. Lieberman, L. Williams, R. Payne, R. Roberts, R. Rowe, and R. Docherty, “Crystal Chemistry and Solvent Effects in Polymorphic Systems Sulfathiazole,” J. Chem. Soc. Faraday Trans. 94(8), 1035-1044 (1998).
T. Lee, S. T. Hung, and C. S. Kuo, “Polymorph Farming of Acetaminophen and Sulfathiazole on a Chip,” Pharm. Res., 23(11), 2542-2555 (2006).
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
B. Hegedus, and S. Gorog, “The Polymorphism of Cimetidine” J. Pharm. Biomed. Anal., 3(4), 303-13 (1985).
M. Shibata, H. Kokubo, K. Morimoto, K. Morisaka, T. Ishida, and M. Inoue, “X-ray Structural Studies and Physicochemical Properties of Cimetidine Polymorphism,” J. Pharm. Sci., 72(12), 1436-1442 (1982).
Y. Kawashima, M. Okumura, and H. Takenaka, “Spherical Crystallization. Part VI. The Effects of Temperature on the Spherical Crystallization of Salicylic Acid,” Powder Technol., 39(1), 41-47 (1984).
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, T. Hino, and T. Niwa, “Particle Design of Tolbutamide by the Spherical Crystallization Technique. III. Micromeritic Properties and Dissolution Rate of Tolbutamide Spherical Agglomerates Prepared by the Quasi-Emulsion Solvent Diffusion Method and the Solvent Change Method,” Chem. Pharm. Bull., 38(3), 733-739 (1990).
K. Morishima, Y. Kawashima, Y. Kawashima, H. Takeuchi, T. Niwa, and T. Hino, “Micromeritic Characteristics and Agglomeration Mechanisms in the Spherical Crystallization of Bucillamine by the Spherical Agglomeration and the Emulsion Solvent Diffusion Methods,” Powder Technol., 76(1), 57-64 (1993).
M. Jbilou, Å. Ettabia, Å. M. Guyot-Hermann, and J. C. Guyot, “Ibuprofen Agglomerates Preparation by Phase Separation,” Drug Dev. Ind. Pharm., 25(3), 297-305 (1999).
M. Nocent, L. Bertocchi, F. Espitalier, M. Baron, and G. Couarraze, “Definition of a Solvent System for Spherical Crystallization of Salbutamol Sulfate by Quasi-emulsion Solvent Diffusion (QESD) Method.” J. Pharm. Sci., 90(10), 1620-1627 (2001).
Y. Kawashima, M. Imai, H. Takeuchi, H. Yamamoto, K. Kamiya, and T. Hino, “Improved Flowability and Compactibility of Spherically Agglomerated Crystals of Ascorbic Acid for Direct Tabletting Designed by Spherical Crystallization Process,” Powder Technol., 130(1), 283-289 (2003).
M. Baranska, and L. M. Proniewicz, “FT-IR and FT-Raman Spectra of Cimetidine and its Metallocomplexes,” J. Mol. Struct., 511(1), 153-162 (1999).
B. Hegedüs, and S. Görög, “The Polymorphism of Cimetidine,” J. Pharm. Biomed. Analysis, 3(4), 303-313 (1985).
N.G. Anderson, “Solvent Selection,” Chapter 4 in Practical Process Research & Development (Academic Press, New York, NY, 2000), pp. 81-111.
A. Sano, T. Kuriki, Y. Kawashima, H. Takeuchi, and T. Niwa, “Particle Design of Tolbutamide by the Spherical Crystallization Technique. Part II. Factors Causing Polymorphism of Tolbutamide Spherical Agglomerates,” Chem. Pharm. Bull., 37(8), 2183-2187 (1989).
Y. Kawashima, and C. E. Capes, “An Experimental Study of the Kinetics of Spherical Agglomeration in a Stirred Vessel,” Powder Technol., 10(1), 85-92, 1974.
S. Bhadra, M. Kumar, S. Jain, S. Agrawal, and G. P. Agrawal, “Spherical Crystallization of Mefenamic Acid,” Pharm. Tech., 28(2), 66-76 (2004).
A. P. Pawar, A. R. Paradkar, S. S. Kadam, and K. R. Mahadik, “Crystallo-co-agglomeration: A Novel Technique to Obtain Ibuprofen-paracetamol Agglomerates,” AAPS PharmSciTech, 5(3), 57-64 (2004).
S. Kaneko, Y. Yamagami, H. Tochihara, and I. Hirasawa, “Effect of Supersaturation on Crystal Size and Number of Crystals Produced in Antisolvent Crystallization,” J. Chem. Eng. Japan, 35(11), 1219-1223 (2002).
S. Shogo, S. Katsutoshi, and H. Yoshio, “Growth and Solvent-mediated Phase Transition of Cimetidine Polymorphic Forms A and B,” J. Chem. Eng. Japan, 24(5): 628-632 (1991).
W. N. Richmond, P. W. Faguy, and S. C. Weibel, “An In Situ Infrared Spectroscopic Study of Imidazole Films on Copper Electrodes,” J. Electroanalytical Chem., 448(2), 237-244 (1998).
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 in Introduction to Spectroscopy (Thomson Learning, Mississippi, U.S.A, 2001), pp. 13-101.
指導教授 李度(Tu Lee) 審核日期 2008-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明