博碩士論文 953901003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.141.35.69
姓名 王勝平(Sheng-ping Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 磨料噴射技術應用於廢矽晶圓精微拋光之研究
(A Study on Micro Polishing of scrap wafer by Abrasive Jet Technology)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要運用自動磨料噴射技術,並以半導體廠報廢矽晶圓表面作為改善對象,探討磨料噴射技術對報廢矽晶圓表面電路層之去除及表面拋光改善效果。本研究並提出兩階段加工法,分為粗拋光與精微拋光加工法,首先在粗拋光研究方面是利用田口實驗計畫法進行實驗規劃,以獲得自動磨料噴射技術各加工參數對報廢矽晶圓表面粗糙度與材料移除量的影響與最佳水準值。接著在精微拋光方面由所獲得之最佳加工參數組合依續探討改變加工時間、不同初始矽晶圓表面與磨料粒徑等加工參數,以追求磨料噴射技術對矽晶圓表面改善至鏡面效果。實驗結果發現自動磨料噴射技術可有效去除報廢矽晶圓表面電路層,並配合由田口實驗計畫法所獲得之最佳加工參數組合,可將矽晶圓表面粗糙度0.14μm Ra 降至0.033μm Ra ,且矽晶圓表面呈現鏡面反射效果。另外研究亦探討經磨料噴射加工後,矽晶圓表面材料特性,發現利用SiC 磨粒進行磨料噴射加工後之矽晶圓表面沒有SiC嵌入表面效應,另外由金相顯微鏡觀察加工後矽晶圓截面,沒有微裂痕產生。
摘要(英) This research mainly uses the automatic abrasive jet technology and takes scrap wafer surface of the semiconductor factory as an improving target in order to probe into the abrasive jet technology for cleaning scrap wafer surface circuit layer and improve surface polishing effect. This study has two processed steps that can be divided into the rough polishing and micro polishing processing method. First, the study of the rough polishing processing uses the Taguchi Method to obtain the optimization of manufacturing process parameters for scrap wafer surface roughness and remove weight on automatic abrasive jet technology. Second, in the micro polishing processing, the best combination of parameters are used to continue discussing the different of initial silicon wafer surface, machining time and abrasive mesh in turn. Expecting that the silicon wafer surface can be improved like a mirror after automatic abrasive jet technology. From the experimental result, we will find the automatic abrasive jet technology can clean the scrap wafer surface circuit layer effectively and conjugate the best combination of parameters by Taguchi Method, the silicon wafer surface roughness value can drop from 0.14μm Ra to 0.033μm Ra, and the silicon wafer surface is presented the reflection result of the mirror. Furthermore, studying and investigating the silicon wafer surface characteristic of material after the abrasive jet technology we will find that utilizing the SiC abrasive jet technology, the silicon wafer surface has no SiC to insert the surface effect and it does not produce any cracks which is observed by the metalloscope.
關鍵字(中) ★ 表面粗糙度
★ 田口品質工程
★ 矽晶圓
★ 拋光
★ 磨料噴射
關鍵字(英) ★ abrasive jet maching
★ polishing
★ silicon wafer
★ Taguchi Method
★ surface roughness
論文目次 中文摘要---------------------------------------------------------------------------i
英文摘要--------------------------------------------------------------------------ii
誌謝--------------------------------------------------------------------------------iv
目錄---------------------------------------------------------------------------------v
圖目錄----------------------------------------------------------------------------viii
表目錄-------------------------------------------------------------------- --------xi
第一章 緒論-----------------------------------------------------------------------1
1-1 研究背景----------------------------------------------------------------1
1-2 研究動機與目的-------------------------------------------------------2
1-3 研究方法----------------------------------------------------------------4
1-4 論文架構----------------------------------------------------------------5
第二章 文獻回顧-----------------------------------------------------------------7
2-1 矽晶圓片表面拋光探討----------------------------------------------7
2-2 磨料噴射加工法探討-----------------------------------------------11
2-3 田口實驗計畫法探討-----------------------------------------------14
第三章 實驗原理與設備-----------------------------------------------------16
3-1 磨料噴射加工法基本原理-----------------------------------------16
3-1-1 磨料噴射技術材料移除機制------------------------------18
3-2 田口品質工程基本原理--------------------------------------------19
3-2-1 變異數分析( ANOVA )及F檢定(F-test)----------------27
3-3 實驗設備--------------------------------------------------------------29
3-3-1 加工設備------------------------------------------------------29
3-3-2 量測觀察設備------------------------------------------------32
3-4 實驗材料--------------------------------------------------------------34
3-5 實驗流程--------------------------------------------------------------37
第四章 磨料噴射技術應用於報廢矽晶圓表面加工特性探討--------38
4-1前置實驗---------------------------------------------------------------38
4-1-1 乾式與濕式加工對報廢矽晶圓表面粗糙度之影響---38
4-1-2 磨料噴射加工路徑對報廢矽晶圓表面之影響---------40
4-1-3 磨料噴射時間對報廢矽晶圓表面之影響---------------42
4-2 實驗條件與田口法實驗規劃--------------------------------------43
4-2-1研究內容-------------------------------------------------------46
4-3 田口實驗結果與討論-----------------------------------------------47
4-3-1 田口品質工程分析------------------------------------------47
4-3-2 ANOVA分析與F檢定-----------------------------------53
4-3-3驗證實驗-------------------------------------------------------55
4-4 磨料噴射技術加工參數因子對報廢矽晶圓品質特性探討--57
4-4-1 實驗條件與實驗規劃---------------------------------------57
4-4-2 衝擊角度對報廢矽晶圓質特性之影響------------------59
4-4-3 加工高度對報廢矽晶圓品質特性之影響---------------61
4-4-4 氣體壓力對報廢矽晶圓品質特性之影響---------------63
4-4-5 磨料與添加劑混合比例對報廢矽晶圓品質特性
之影響---------------------------------------------------------65
4-4-6 旋轉平台轉速對報廢矽晶圓品質特性之影響---------67
4-4-7 Table移動速率對報廢矽晶圓品質特性之影響------69
4-4-8 加工時間對報廢矽晶圓品質特性之影響-------------71
第五章 磨料噴射技術應用於矽晶圓精微拋光之探討------------------75
5-1 不同初始矽晶圓表面精微拋光之影響--------------------------75
5-2 磨料粒徑對矽晶圓表面精微拋光之影響-----------------------81
5-3 矽晶圓表面特性探討-----------------------------------------------85
5-3-1 矽晶圓表面成分分析---------------------------------------85
5-3-2 矽晶圓截面裂痕檢測---------------------------------------87
5-3-3 磨料噴射加工法表面鏡面拋光結果---------------------88
第六章 結 論---------------------------------------------------------------91
參考文獻----------------------------------------------------------------------92
參考文獻 1. 李明逵,“矽元件與積體電路製程”,全華科技圖書,2002。
2. 王仲淳,楊擇哲,“利用再生晶圓製作太陽電池之研究”,No.153,中國電源學會第十六屆學術年會,2005年。
3. 杜錦坤、蔡尚林,“自廢IC回收金屬技術”,工研院能資所,87年6月。
4. 楊擇哲,“利用半導體廠報廢晶圓製作太陽電池之研究”,私立元智大學電機工程學系碩士論文,2005。
5. 王建榮、林必窕、林慶福等,“半導體平坦化CMP技術”,全華科技圖書,2000年。
6. 楊宗儒,“半導體化學機械研磨廢水之處理與回收”,私立元智大學化學工程研究所碩士論文,2001。
7. R. Balasubrama, J. Krishnan, N. Ramakrishnan, “A study on the sharp of the surface generated by abrasive jet machining”, Journal of Materials Processing Technology 121 (2002) 102-106.
8. K. D. Beyer, U. S. Patent, No. 4944836,(1990).
9. L. M. Cook, ”Chemical process in Glass Polishing”, J. Non-Crystalline Solid, Vol.120(1990) pp.152-171.
10. Y. Tani, “Development of High-Concentration Lapping Discs with Low Bonding Strength and Application to Mirror Finishing of Brittle Materials”, JSME International Journal, Vol.36(1993)pp.264~270.
11. W. Milind, “Improving CMP Performance Using Grooved Polishing Pads”,第三屆微毫米技術研討會,1996,pp.45-63。
12. C. W. Liu, B .T .Dai and C. F. Yeh, ”Modeling of the Wear Mechanism during Chemical Mechanical Polishing”, Journal of the Electrochemical Society, Vol.143(1996) pp.716-721.
13. 張智傑,“化學機械研磨之晶圓研磨時邊界條件影響分析”,中國工程師學會第十六屆全國學術研討會輪文集,1999。
14. F. Zhang and Busnaina, ”the Role of Particle and Surface Deformation in Chemical Mechanical Polishing Processes”, Electrochemical and Solid-State Letters, Vol.1(1998) pp.184-187.
15. 黃志龍,“淺談化學機械拋光的演進與應用”,機械工業雜誌,2000年5月。
16. Chris Barns, “CMP Velocity Profile Comparisons of several CMP Mechanisms”, SEMI(2000)pp.J1-J26。
17. David K. Watts, “Chemical Mechanical Planarization by a Rotatry Fixed-Abrasive Process”, SEMI(2000)pp.H1-H8。
18. Chao-Chang A. Chen, Li-Sheng Shu, Shah-Rong. Lee, “Mechano chemical polishing of silicon wafers”, Journal of Materials Processing Technology,Vol.140(2003)pp.373~378.
19. 古振瑭,“乾式機械化學拋光在單晶藍寶石晶圓之平坦化加工研究”,國立台灣科技大學機械工程研究所碩士論文,2004。
20. 林易萱,“矽晶圓薄化之研磨特性研究”,中山大學機械與機電工程研究所碩士論文,2006。
21. I. M. Hutchings, N. H. Macmillan, D. G. Rickerby, Furyher studies of theoblique impact of a sphe reagainst a ductile solid, Int. J. Mech. Sci. 23(1981) 639-646.
22. H. Wensink, H. V. Jansen, J. W. Berenschot and M. C. Elwenspoek, “Mask materials for poeder blasting”, J Micromech. Microeng. 10 (2000) 175-180.
23. H. Wensink, H. V. Jansen, J. W. Berenschot and M. C. Elwenspoek, “High Resolution Powder Blast Micromachining”, Micro Electro Mechanical Systems (2000) 769-774.
24. S. Schlautmann, H. Wensink, R. Schasfoort, M. Elwenspoek, A. vandenberg, “Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips withintegrated conductivity sensors”, J. Micromech. Microeng. 11 (2001)386-389.
25. E. Belloy, A. Sayah, M.A.M. Gijs, “Oblique powder blasting for three-dimensional micromachining of brittle materials”, Sensors and Actuators A 92 (2001) 358-363.
26. M. Wakuda, Y. Yamauchi, S. Kanzaki, ” Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials”, Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002)193–198.
27. J.A. Plaza, M. J. Lopez, A. Moreno, M. Duch, C. Cané, “Definition of high aspect ratio glass columns”, Sensors and Actuators A105 (2003) 305–310.
28. D. Jianxin, F. Yihua, D. Zeliang, S. Peiwei, “Wear behavior of ceramic nozzles in sand blasting treatments”, Journal of the European Ceramic Society 23 (2003) 323–329.
29. M. Wakuda, Y. Yamauchi, S. Kanzaki, “Material response to particle impact during abrasive jet machining of alumina ceramics”, Journal of Materials Processing Technology 132 (2003) 177–183.
30. D. S. Park, M. W. Cho, H. Lee , W. S. Cho, “Micro-grooving of glass using micro-abrasive jet machining”, Journal of Materials Processing Technology 146 (2004) 234-240.
31. J. Qua, A. J. Shih, R. O. Scattergood, J. Luo, “Abrasive micro-blasting to improve surface integrity of electrical discharge machined WC–Co composite”, Journal of Materials Processing Technology 166 (2005) 440–448.
32. A. Sayah , V.K. Parashar, A. G. Pawlowski, M.A.M. Gijs, “Elastomer mask for powder blasting microfabrication”, Sensors and Actuators A125 (2005) 84–90.
33. M. Junkar, B. Jurisevic, M. Fajdiga, M. Grah, “Finite element analysis of single-particle impact in abrasive water jet machining”, International Journal of Impact Engineering 32 (2006) 1095–1112.
34. 張季娜、羅仕勇、宋振昌、蔡彰文等,“田口式品質工程導論”,中華民國品質管制學會,1993。
35. 林江龍,“放電加工電極消耗可靠度與製程參數最佳化研究”,國立中央大學機械工程學系博士論文,1999。
36. M. S. Phadke, “Quality Engineering Using Robust Design”, AT&T Bell Laboratories (1989).
37. F. C. Khaw, B. S. Lim, and E. N. Lim, “Optimal Design of Neural Networks Using the Taguchi Method”, Neural Computing 7 (1995) 225-245.
38. J. H. Lau, and C. Chang, “Taguchi Design of Experiment for Wafer Bumping by Stencil Printing”, IEEE Transactions on Electronics Packaging Manufacturing 233 (2000) 219-225.
39. G. Taguchi, “Taguchi Methods in LSI Fabrication Process”, IEEE International Workshop on 2001 6th, (2001) 1-6.
40. 丁信志,“田口方法應用於高速放電加工製程之最佳參數設計”,國立高雄第一科技大學機械與自動化工程系碩士論文,2003。
41. B. R. Lawn, A. G. Evans, D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system”, J. Am. Ceram.63(9) (1980) 574-581.
42. D. B. Marshall, “Geometrical effects in elastic/plastic indentation”, J.Am. Ceram. 64 (1981) 57-60.
43. P. D. Warren, “Determining the Fracture Toughness of Brittle Materials by Hertzian Indentation”, J Euro. ceram Soc 15 (1995)385-394.
44. 官君宇,“磨料噴射技術應用於精微拋光之研究”,國立中央大學機械工程學系碩士論文,2006。
45. 鄭燕琴,“田口式品質工程技術理論與實務”,中華民國品質管制學會,1993。
46. 蕭綱衡,「田口式參數設計在鐵礦燒結之應用研究」,中國統計學報,pp.253~275,1990。
47. 張耿維,「磁力研磨與電解磁力研磨之拋光特性研究」,國立中央大學機械工程學系博士論文,2003。
48. 蕭宏,“半導體製程技術導論”,歐亞出版,pp.310~342,2004年9月。
指導教授 顏炳華(Biing-hwa Yan) 審核日期 2008-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明