博碩士論文 953901015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.224.55.82
姓名 王嵐慧(Lan-Hui Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以微觀角度分析具互溶性之液-液相
(Microscopic viewpoint of liquid-liquid miscibility)
相關論文
★ 反離子的凝聚作用和釋放於界劑溶液中添加鹽類的影響之研究★ 以離子型界劑溶解微脂粒之研究
★ 奈米添加物對微乳液滴靜電特性的影響–蒙地卡羅模擬法★ W/O型微乳液液滴之電荷分佈量測
★ 溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究★ 明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化
★ 膽固醇與膽鹽對微脂粒穩定度的影響★ 電解質溶液的表面張力-蒙地卡羅模擬法
★ 稀薄聚電解質溶液中的反離子凝聚現象★ 溫度不敏感性之電動力學行為於毛細管區域電泳
★ 以熱力學性質定義帶電粒子的電荷重正化現象★ 聚乙二醇與界面活性劑的作用
★ 聚電解質溶液中的反離子凝聚現象★ 聚電解質在中性高分子溶液中的泳動行為
★ 在聚電解質溶液中的有效電荷★ 以分散粒子動力學法模擬雙性團聯共聚物微胞之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是以一種介觀尺度下的模擬方法-分散粒子動力學(Dissipative Particle Dynamics)來探討簡單的雙成份溶液中,改變系統中的斥力參數(Repulsive parameter)和濃度,可以分析得到其團聚(cluster)的數量和形狀。發現在斥力參數aow=30下,溶液濃度為C=4%與C=14%時,確實如文獻所發現的會以小團聚的現象存在,團聚大以2-50顆的大小存在。而當斥力參數高到24%時,進而發現會有一滲透(Percolation Threshold)的現象發生。接著我們以碎形維度(Fractal dimension)來探討在相同濃度與斥力參數之下,溶液中團聚的形狀。得知此溶液其最大團聚集和小團聚集的碎形維度是一樣的,即最大團形狀與小團無異。然而,隨著改變濃度區間在(2-20%)卻會使得碎形維度有上升的趨勢。進而使用了The Kirkwood-Buff Theory,藉由它能夠連接微觀的分子分佈得到巨觀的熱力學性質,我們得到在雙成份系統內,當斥力參數由小變大時, 的值為增加的趨勢;反之 則是減少。
摘要(英) This work is to investigate the microscale clusters and solvation characteristic in a completely miscible two-component system. In order to study the behavior of clusters, we perform Dissipative Particle Dynamics (DPD) simulation to obtain the effect of concentration on the clusters size and fractal dimension (df). It is known that the solvation molecules in aqueous solution cluster together despite solvent and solution being fully miscible in macroscale. The present results show that small clusters do exist. The cluster size and fractal dimension (df) increases with increasing solvent concentration from 8% to 16%. The fractal dimension is increasing from 1.7 to 2.0. When the solvent concentration is over 20%, the cluster size increases rapidly. The percolation threshold concentration of the solvent is 25%.
.
The compressibility factor has been widely accepted and applied to evaluate the solvation ability. The compressibility relation is one of the simplest and most useful relations between a thermodynamic quantity and pair correlation function. Although solvation ability varies as the reciprocal compressibility, we found that the converse result for soft molecules and solvation ability is closely related to compressibility, partial molar volumes and Floury-Huggins parameter. Consequently, Ben-Naim definition is applied to determine the hydration ability. The Ben-Naim definition of solutions is originally formulated to obtain thermodynamic quantities from molecular distribution functions. It is the excess number of molecules of various species around a selected molecule is a important quantity in the analysis of the solvation number of mixture system. Our simulation results demonstrated that Ben-Naim definition is more accurately than compressibility factor.
關鍵字(中) ★ 分散粒子動力學
★ 碎形維度
★ 水合數
關鍵字(英) ★ DPD
★ kirkwood-Buff theory
★ fractal dimension
★ radial distribution function
論文目次 目錄
摘要........................................................................................................... Ⅰ
誌謝........................................................................................................... Ⅳ
目錄............................................................................................................ Ⅴ
圖目錄...................................................................................................... Ⅶ
表目錄...................................................................................................... Ⅸ
第一章 序論..............................................................................................1
第二章 理論與名詞簡介........................................................................3
2-1分散粒子動力學(DPD).............................................................3
2-1-1原理簡介(Equations of motion) ...........................................6
2-1-2 長度、速度、時間的尺度..................................................9
2-1-3 積分法求解(Integration scheme) ......................................11
2-1-4 噪訊和分散耗損(Noise and dissipation) ..........................12
2-1-5 狀態方程式(Equation of state) ........................................14
2-2 理想混合溶液................................................................................16
2-3 徑向分佈函數 (Radial Distribution Function, g(r)) .....................17
2-4 碎形維度.........................................................................................19
2-5 The Kirkwood–Buff theory...........................................................21
2-6 The Excess Number of Molecules around a Central Molecule
( nij) ...............................................................................................23
第三章 文獻回顧.....................................................................................25
第四章 模擬系統設定.............................................................................30
第五章結果與討論.....................................................................................32
5-1 斥力參數的選擇..........................................................................32
5-2 以DPD模擬方法重現文獻論證................................................34
5-3 高濃度下計算aggregate的修正.................................................37
5-4 以碎形維度分析團聚的形狀......................................................39
5-5 以KB理論討論團聚性質...........................................................42
5-6 以修正後的Δnij討論壓縮度對其影響.......................................47
第六章 結論.............................................................................................50
參考文獻.....................................................................................................51
參考文獻 1. M.P.Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press Inc. (1987).
2. P. J. Hoogerburgge and J. M. V. Koelman, Europhysics Letters V19, 155 (1992).
3. Maddalena Venturoli, Mesoscopic models of lipid bilayers and bilayers with embedded proteins-A Dissipative Particle Dynamics study (2004).
4. Español, P., Warren, P., Europhysics Letters, 30, 191-196 (1995).
5. Fan, C. F., Olafson, B. D., Blanco, M., Hsu, S. L., Macromolecules, 25, 366 (1987).
6. Groot R. D., Warren, P. B. , J. Chem. Phys., 107, 4423-4435 (1997).
7. D. Frenkel, Understanding Molecular Simulation from algorithms to applications, Academic Press (1996).
8. D. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London 1997.
9. 梁雲芳、陳義裕, 科學發展, 370 (2003).
10. Arieh Ben-Naim, Molecular Theory of Solutions (2006).
11. Ben-Naim, A. Statistical Thermodynamics for Chemists and
Biochemists; Plenum Press: New York, 1992
12. S. Dixit, J. Crain etc. , NATURE, 416, 829-832 (2002).
13. M. Misawa, K. Mori, Journal of Chemical Physics, 121, 4716-4723 (2004)
14. Ivan L. Shulgin and Eli Ruckenstein, J. Phys. Chem. B, 110, 12707-
12713 (2006)
指導教授 曹恒光(Heng-Kwong Tsao) 審核日期 2008-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明