參考文獻 |
Chapter 1
Michael H. C. Jin, “The Thin-Film Deposition of Conjugated Molecules for Organic Electronics,” J. Miner. Met. Mater. Soc., 60(6), 81-86 (2008).
Neopoly Inc. market forecast, http://www.neopoly.net/market.htm.
Organic Photovoltaic Applications and Development of OPV Materials for Portable Electronics by NanoMarkets, http://www.azom.com/details.asp?ArticleID=4528#2.
M. Colle, R. E. Dinnebier, and W. Brutting, “The Structure of the Blue Luminescent δ-phase of Tris(8-hydroxyquinoline)aluminum (III) (AlQ3),” Chem. Commun., 2002(23), 2908-2909 (2002).
L. S. Hing, and C. H. Chen, “Recent Progress of Molecular Electroluminescent Materials and Devices,” Mater. Sci. Eng. R, 39(5-6), 143-222 (2002).
C. W. Tang and S. A. VanSlyke,“Organic Electroluminescent Diodes,” Appl. Phya. Lett. 51 (12), 913-915 (1987)
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting, ”Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003)
D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, and J. E. Aanthony, “Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits,” Nat. Mater., 7(3), 216-221 (2008).
C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” J. Res. Dev., 45(1), 11-27 (2001).
S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett., 85(22), 5427-5429 (2004).
P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature, 425(6954), 158-162 (2003).
Z. Chen, K. Ogino, S. Miyata, Y. Lu and T. Watanabe, “The pure white light emission from three-layer electroluminescent device”, J. Phys. D: Appl. Phys. 35(8) ,742-746 (2002).
C. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, and A. Karbach, “Surface roughness effects and their influence on the degradation of organic light emitting devices,” J. Mater. Sci., 35(22), 5645-5651 (2000).
T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, T. Mitani, “Improved lifetime of an OLED using aluminum(III) tris(8-hydroxyquinolate),” Sci. Tech. Adv. Mater., 5(3), 331-337 (2004).
J. Lewis, S. Grego, E. Vick, B. Chalamala, and D. Temple, “Mechanical Performance of Thin Films in flexible Displays in Flexible Electronics 2004-Materials and Device Technology,” (Res. Soc. Symp. Proc. 814(8), Wasreudale, PA, 2004) insert paper number I8.5.1-I5.5.10.
D. Berner, H. Houili, W. Leo, and L. Zuppiroli, “Insights into OLED functioning through coordinated experimental measurements and numerical model simulations,” Phys. Status Solidi A, 202(1), 9-36 (2005).
F. Papadimitrakopoulos, X. M. Zhang, and K. A. Higginson, “Chemical and Morphology Stability of Aluminum Tris(8-Hydroxyquinoline)(Alq3): Effects in Light-Emitting Devices,” J. Sel. Top. Quantum Electron., 4(1), 49-57 (1998).
C. W. Tang, and S. A. VanSlyke, “Organic Electroluminescent Diodes”, Appl. Phys. Lett. 51 (12), 913-915 (1987).
C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” J. Res. & Dev., 45(1), 11-27 (2001).
C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic Thin-Film Transistors: A Review of Recent Advances,” J. Rev. & Dev., 45(1), 11-27 (2001).
G. Horowitz, “Organic Field-Effect Transistors,” Adv. Mater., 10(5), 365-377 (1998).
T. N. Jackson, “Organic Semiconductors: Beyond Moore’s Law,” Nature Mater., 4(8), 581-582 (2005).
D. J. Gundlach, “Organic Electronic: Low-Power, Big Impact,” Nature Mater., 6(3), 173-174 (2007).
M. Berggren, D. Nilsson, and N. D. Robinson, “Organic Materials for Printed Electronics,” Nature Mater., 6(1), 3-5 (2007).
J. H. Schon, C. Kloc, E. Bucher, and B. Batlogg, “Single crystalline pentacene solar cells,” Synth. Met., 115(1-3), 177-180 (2000).
J. Puigdollers, C. Voz, A. Orpella, I. Martin, M. Vetter, and R. Alcubilla, “Pentacene thin-films obtained by thermal evaporation in high vacuum,” Thin Solid Films, 427(1-2), 367-370 (2003).
S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett., 85(22), 5427-5429 (2004).
W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, “Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition,” Appl. Phys. Lett., 90(25), 253511(1-3) (2007).
P. Peumans, S. Uchlda, and S. R. Forrest, “Efficient Bulk Heterojunction Photovoltaic Cell Using Small-Molecular-Weight Organic Thin Films,” Nature, 425(6954), 158-162 (2003).
D. Cheyns, H. Gommans, M. Odijk, J. Poortmans, and P. Heremans, “Stacked organic solar cells based on pentacene and C60,” Sol. Energy Mater. Sol. Cells, 91(5), 399-404 (2007).
W. B. Chen, H. F. Xiang, Z. X. Xu, and B. P. Yan, “Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer,” Appl. Phys. Lett., 91(19), 191109(1-3) (2007).
F. Yi, Z. X. Guo, L. X. L. X. Zhang, J. Yu, and Q. Li, “Soluble Eggshell Membrane Protein: Preparation, Characterization and Biocompatibility,” Biomaterials, 25(19), 4591-4599 (2004).
W. T. Tsai, J. M. Yang, C. W. Lai, Y. H. Cheng, C. C. Lin, and C. W. Yeh, “Characterization and Adsorption Properties of Eggshells and Eggshell Membrane,” Bioresource Technology, 97(3), 488-493 (2006).
F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, “Fabrication and Characterization of a Sponge-Like Asymmetric Chitosan Membrane as A Wound Dressing,” Biomaterials, 22(2), 165-173 (2001).
P. Y. Tsenga, S. M. Releb, X. L. Sunb, and E. L. Chaikofa, “Fabrication and Characterization of Heparin Functionalized Membrane-Mimetic Assemblies,” Biomaterials, 27(12), 2627-2636 (2006).
-------------------------------------------------------
Chapter 2
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7) 699-709 (2001).
D. L. Pavia, G. M. Lampman and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 of “Introduction to Spectroscopy,” Third Edition, (Brooks/COLE Thomson Learning, Mississippi, USA, 2001), pp. 13-24.
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht and W. Brütting, ”Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (AlQ3),” Adv. Funct. Mater., 13(2), 108-112 (2003).
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 of “Principles of Instrumental Analysis,” Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 549-553.
R. E. Reed-hill, “Analytical Methods,” Chapter 2 of “Physical Metallurgy Principles,” Third Edition, (PWS Publishing Company, Boston, USA, 1994), pp. 53-60.
J. E. Macur, J. Marti and S. C. Lui, “Microscopy,” Chapter 8 of “Matericals Characterization and Chemical Analysis,” Second edition, (J. P. Sibilia, Wiley-Vch, New York, USA, 1996), pp. 167-177.
E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N. Drebushchak, “DSC and Adiabatic Calorimetry Study of The Polymorphs of Paracetamol,” J. Them. Anal. Calor., 77(2), 607-623 (2004).
D. Giron, “Thermal Analysis, and Calorimetric Methods in The Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 245(2), 1-59 (1995).
S. D. Clas, C. R. Dalton, and B. C. Hancock, “Differential Scanning Calorimetry: Applications in Drug Development,” Pharm. Sci. Technolo. Today, 2(8), 311-320 (1999).
B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo, “General Principles of Pharmaceutical Solid Polymorphism a Supramolecular Perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Thermal Methods,” Chapter 31 of “Principles of Instrumental Analysis,” Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 798-801.
F. Rouessac, and A. Rouessac, “Infrared Apectroscopy,” Chapter 10 of “Chemical Analysis-Modern Instrumentation Methods and Techniques,” First edition, (John Willy & Sons, Chichester, England, 2001), pp. 170-173.
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Principles of Instrumental Analysis,” Chapter 7 of “Components of Optical Instrument,” Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 182-183.
A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
D. Zheng, H. Li, Y. Wang, and F. Zhamg, “Surface and Interface Analysis of Tris-(8-hydroxyquinoline) Aluminum and Induim-Tin-Oxide Using Atomoic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS),” Appl. Surf. Sci., 183(3), 165-172 (2001)
WWW.tut.fi/surfsci/xps_principle_5.jpg, “Electron Spectroscopy (XPS, AES, UPS).”
C. P. Cho, C. Y. Yu, and T. P. Perng, “Growth of AlQ3 Nanowires Directly From Amorphous Thin Film and Nanoparticles,” Nanotechnology, 17(21), 5506-5510 (2006)
. http://biosurface.memphis.edu/images/ConfigCoordDiag2.png, “Luminescence.”
N. S. Murthy and F. Reidinger, “X-ray Analysis,” Chapter 7 of “Matericals Characterization and Chemical Analysis,” (J. P. Sibilia, Wiley-Vch , New York, USA, 1996) pp. 143-149.
T. C. Huang, “Automatic X-ray Single Crystal Structure Analysis System for Small Molecule,” The Rigaku J., 21(2), 43-46 (2004).
Y. Zhang and D. J. W. Grant, “Similarity in Structures of Racemic and Enantiomeric Ibuprofen Sodium Dehydrates,” Acta Crystallogr. C, 61(9), m435-m438 (2005).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen,” Acta Crystallogr. Sect. E, 59(9), o1357-o1358 (2003).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen. corrigendum,” Acta Crystallogr. E, 62(7), e17-e18 (2006).
C. Ciacovazzo, H. L. Monaco, G. Artioli, D. viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, “Experimental Method in X-ray Andneutron Crystallography,” Chapter 5 of “Fundamentals of Crystallography,” second edition, (Oxford university press, New York, USA, 2002) p336 .
R. Potter, “An X-ray Single-Crystal Linear Diffractometer,” J. Sci. Instrum., 39(7), 379-380 (1962).
--------------------------------------------------
Chpater 3
H. Klauk, and T. N. Jackson, “Pentacene Organic Thin-Film Tran Sistors and ICs,” Solid State Technology, 43(3), 63-70 (2000).
C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic Thin-Film Transistors: A Review of Recent Advances,” IBM J. RES. & DEV., 45(1), 11-27 (2001).
J. S. Jung, K. S. Cho, and J. Jang, “A Large Grain Pentacene by Vapor Phase Deposition,” J. Korean Phys. Soc., 42, 428-430 (2003).
C. L. Tao, X. H. Zhang, F. J. Zhang, Y. Y. Liu, and H. L. Zhang, “Solution Processed Pentacene Thin Films and Their Structural Properties,” Mater. Sci. Eng. B, 140(1-2), 1-4 (2007).
T. Kakudate, and N. Yoshimoto, “Polymorphism in Pentacene Thin Film on SiO2 Substrate,” Appl. Phys. Lett., 90(8), 081903 (2007).
J. H. Schon, S. Berg, Ch. Kloc, and B. Batlogg, “Ambipolar Pentacene Field-Effect Transistors and Inverters,” Science, 287(5455), 1022-1023 (2000).
C. W. Tang, and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12), 913-915 (1987).
R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D.D.C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in Conjugated Polymers,” Nature, 397(6715), 121-128 (1999).
P. Peumans, S. Uchlda, and S. R. Forrest, “Efficient Bulk Heterojunction Photovoltaic Cell Using Small-Molecular-Weight Organic Thin Films,” Nature, 425(6954), 158-162 (2003).
S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and C. Hummelen, “2.5% Efficient Organic Plastic Solar Cells,” Appl. Phys. Lett., 78(6), 841-843 (2001).
T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, “Recent Progress in Organic Electronics: Materials, Devices and Processes,” Chem. Mater., 16(26), 4413-4422 (2004).
Y. D. Cho, G. T. K. Fey, H. M. Kao, “The Effect of Carbon Coating Thickness on the Capacity of LiFePO4/C Composite Cathodes,” J. Power Sources, 189(1), 256-262 (2009).
S. L. Cheng, S. W. Lu, S. L. Wong, C. C. Chang, and H. Chen, “Fabrication of 2D Ordered Arrays of Cobalt Silicide Nanodots on (0 0 1)Si Substrates,” J. Cryst. Growth, 300(2), 473-477 (2007).
A. Afzali, C. D. Dimitrakopoulos and T. L. Breen, “High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor,” J. Am. Chem. Soc., 124(30), 8812-8813 (2002).
Q. Miao, T.Q. Nguyen, T. Someya, G. B. Blanchet and C. Nuckolls, “Synthesis, Assembly, and Thin Film Transistors of Dihydrodiazapentazene: An Isostructural Motif for Pentacene,” J. Am. Chem. Soc., 125(34), 10284-10287 (2003).
D. Mathieu and P. Bougrat, “Model Equations for Estimating Sublimation Enthalpies of Organic Compounds,” Chem. Phys. Lett., 303(5-6) (1999).
A. V. Trask, W. D. S. Motherwell and W. Jones, “Solvent-Drop Grinding: Green Polymorph Control of Cocrystallisation,” Chem. Commun., 2004(7), 890-891 (2004).
L. K. Marjatta, K. Milja, R. Jukka, H. Mikko, and K. Juha, “Crystallization of Glycine with Ultrasound,” Int. J. Pharm., 320(1-2), 23-29 (2006).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Technol., 30(10), 72-92 (2006).
D. J. W. Grant, “Approaches to polymorphism screening,” chapter 11 in Polymorphism in Pharmaceutical Solids, edited by H. G. Brittain, ( Marcel Dekker, INC., New York, 1999) p. 289.
W. Beckman, W. Otto, and W. Budde, “Crystallisation of The Stable Polymorph of Hydroxytriendione: Seeding Process and Effects of Purity,” Org. Proc. Res. Dev., 5(4), 387-392 (2001).
R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-Integrated Approach From High-Throughput Screening to Crystallization Optimization,” J. Therm. Anal. Calorim., 73(2), 429-440 (2003).
K. J. Crowley, G. Zografi, “Cryogenic Grinding of Indomethacin Polymorphs and Solvates: Assessment of Amorphous Phase Formation and Amorphous Phase Physical Stability,” J. Pharm. Sci., 91(2), 492-507 (2001).
G. Ruecroft, D. Hipkiss, T. Ly, N. Maxted, and P. W. Cains, “Sonocrystallization: The Use of Ultrasound for Improved Industrial Crystallization,” Org. Process Res. Dev., 9(6), 923-932 (2005).
W. T. Richards, and A. L. Loomis, “The Chemical Effects of High Frequency Sound Waves . I. A preliminary survey,” Am. Chem. Soc., 49(12), 3086-3100 (1927).
K. S. Suslick, D. A. Hammerton, and R. E. Cline, “The Sonochemical Hot Spot,” Am. Chem. Soc., 108(18), 5641-5642 (1986).
B. S. Hoyle, and S. P. Luke, “Ultrasound in The Process Industries,” Eng. Sci. Edu. J., 3(3), 119-122, (1994).
P. W. Cains, P. D. Martin, and C. J. Price, “The Use of Ultrasound in Industrial Chemical Synthesis and Crystallization. 1. Applications to Synthetic Chemistry,” Org. Process Res. Dev., 2(1), 34-48 (1998).
R. Chow, R. Blindt, R. Chivers, and M. Povey, “The Sonocrystallization of Ice in Sucrose Solutions: Primary and Secondary Nucleation,” Ultrasonics, 41(8), 595-604 (2003).
A. Paradkar, M. Maheshwari, R. Kamble, I, Grimsey, and P. York, “Design and Evaluation of Celecoxib Porous Particles Using Melt Sonocrystallization,” Pharmacol. Res., 23(6), 1395-1400 (2006).
P. R. Gogate, R. K. Tayal, and A. B. Pandit, “Cavitation: a Technology on the Horizon,” Curr. Sci., 91(1), 35-46 (2006).
L. K. Marjatta, M. Kargalainen, J. Rantanen, M. Huhtanen, and J. Kallas, “Crystallization of Glycine with Ultrasound,” Int. J. Pharm., 320(1-2), 23-29 (2006).
R. Sivabalan, G. M. Gore, U. R. Nair, A. Saikia, S. Venugopalan, and B. R. Gandhe, “Study on Ultrasound Assisted Precipitation of CL-20 and Its Effect on Morphology and Sensitivity,” J. Hazard. Mater., A139(2), 199-203 (2007).
M. N. Patil, G. M. Gore, A. B. Pandit, “Ultrasonically Controlled Particle Size Distribution of Explosives: a Safe Method,” Ultrason. Sonochem., 15(3), 177-187 (2008).
Y. Song, W. Chen, and X. Chen, “Ultrasonic Field Induced Chiral Symmetry Breaking of NaClO3 Crystallization,” Cryst. Growth Des., 8(5), 1448-1450 (2008).
A. Patist, and D. Bates, “Ultrasonic Innovations in The Food Industry: From The Laboratory to Commercial Production,” Innovative Food Science and Emerging Technologies, 9(2), 147-154 (2008).
A. Llinas and J. M. Goodman, “Polymorph Control: Past, Present and Future,” Drug Discovery Today, 13(5-6), 198-210 (2008).
L. J. McCausland, P. W. Cains, and P. D. Martin, “Use The Power of Sonocrystallization for Improved Properties,” Chem. Eng. Prog., 97(7), 56-61 (2001).
G. Ruecroft, D. Hipkiss, T. Ly, N. Maxted, and P. W. Cains, “Sonocrystallization: the Use of Ultrasound for Improved Industrial Crystallization,” Org. Process Res. Dev., 9(6), 923-932 (2005).
T. Lee, and M. S. Lin, “Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (AlQ3) by Crystal Engineering,” Cryst. Growth Des., 7(9), 1803-1810 (2007).
http://www.sonochemistry.info/Fig%203-5.JPG, “The Sonochemistry Center at Coventry University.”
R. B. Campbell, J. Moneta Robertson, and J. Trotter, “The Crystal and Molecular Structure of Pentacene,” Acta Crys., 14(7), 705-711 (1961).
W. J. Hehre, “Ab Initio Molecular Orbital Theory,” Acc. Chem. Res., 9(11), 399-406 (1976).
J. Szczepanski, C. Wehlburg, and M. Vala, “Vibrational and Electronic Spectra of Matrix-Isolated Pentacene Cations and Anions,” Chem. Phys. Lett., 232(2), 221-228 (1995).
C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor Applications,” J. Appl. Phys., 80(4), 2501-2508 (1996).
D. Holmes, S. Kumaraswamy, A. J. Matzger, and K. Peter C. Vollhardt, “On The Nature of Nonplanarity in the [N]Phenylenes,” Chem. Eur. J., 5(11), 3399-3412 (1999).
C. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Bore, and Thomas T. M. Palstra, “Identification of Polymorphs of Pentacene,” Synth. Met., 138(3), 475-481 (2003).
I. P .M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth, T. M. Klapwijk, “Morphology Identification of The Thin Film Phases of Vacuum Evaporated Pentacene on SiO2 Substrates,” Synth. Met., 104(3), 175-178 (1999).
D. J. Gundlach, T. N. Jackson, D. G. Schlom, and S. F. Nelson, “Solvent-Induced Phase Transition in Thermally Evaporated Pentacene Films,” J. Appl. Phys., 74(22), 3302-3304 (1999).
L. Farina, A. Brillante, R. G. D. Valle, E. Venuti, M. Amboage, and K. Syassen, “Pressure-Induced Phase Transition in Pentacene,” Chem. Phys. Lett., 375(5-6), 490-494 (2003).
L. Farina, K. Syassen, A. Brillante, R. G. D. Valle, E. Venuti, and N. Karl, “Pentacene at High Pressure,” High Pressure Research, 23(3), 349-354 (2003).
R. G. D. Valle, A. Brillante, E. Venuti, L. Farina, A. Girlando, and M. Masino, “Exploring The Polymorphism of Crystalline Pentacene,” Org. Electron., 5(1-3), 1-6 (2004).
T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov, B. Batlogg, and C. Kloc, “A polymorph Lost and Found: The High Temperature Crystal Structure of Pentacene,” Adv. Mater., 19(16), 2079-2083 (2007).
C. C. Mattheus, G. A. de Wijs, R. A. de Groot, and T. T. M. Palstra, “Modeling The Polymorphism of Pentacene,” J. Am. Chem. Soc., 125(20), 6323-6330 (2003).
M. D. Halls and H. B. Schlegel, “Molecular Orbital Study of The First Excited State of The OLED Material Tris(8-hydroxyquinoline)aluminum(III),” Chem. Mater., 13(8), 2632-2640 (2001).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, ”Introduction to Infrared and Raman Spectroscopy,” Third Edition (Academic press Inc, New York, USA, 1990), pp. 282, 347, and 349.
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Introduction to Spectroscopy,” Third Edition (Brooks/COLE Thomson Learning, New York, USA, 2001), p.41.
H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and Characterization of Tris(8-hydroxyquinoline)aluminum,” Mater. Sci. Eng., B 100(1), 40-46 (2003)
Chun-Lan Tao, Xu-Hui Zhang, Fu-Jia Zhang, Yi-Yang Liu, and Hao-Li Zhang, “Solution Processed Pentacene Thin Films and Their Structural Properties,” Mater. Sci. Eng. B, 140(1-2), 1-4 (2007).
A. Maliakal, K. Raghavachari, H. Katz, E. Chandross and T. Siegrist, “Photochemical Stability of Pentacene and a Substituted Pentacene in Solution and in Thin Films,” Chem. Mater., 16(26), 4980-4986 (2004).
M. N. Patil, G. M. Gore, and A. B. Pandit, “Ultrasonically Controlled Particle Size Distribution of Explosive: A Safe Method,” Ultrason. Sonochem., 15(3), 177-187 (2008).
K. Srinivasan, S. Anbukumar, and P. Ramasamy, “Mutual Solubility and Metastable Zone Width of NH4H2PO4-KH2PO4 Mixed Solutions and Growth of Mixed Crystals,” J. Cryst. Growth, 151(1), 226-229 (1995).
T. L. Threlfall, “Analysis of Organic Polymorphs,” Analyst., 120(10), 2435-2460 (1995).
T. L. Threlfall, “Crystallisation of Polymorphs: Thermodynamic Insight Into The Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, and T. M. Palstra, “Polymorphism in Pentacene,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C57(7), 939-941 (2001).
Z. J. Li, W. H. Ojala, D. J. W. Grant, “Molecular Modeling Study of Chiral Drug Crystals: Lattice Energy Calculations,” J. Pharm. Sci., 90(10), 1523-1539 (2001).
http://en.wikipedia.org/wiki/surface energy, “Wikipedia.”
M. Dogan, M. S. Eroglu and H. Y. Erbil, “Surface Free-Energy Analysis of Energetic Poly(glycidyl azide) Networks Prepared by Different Reactive Systems,” J. Appl. Polym. Sci., 74(12), 2848-2855 (1999).
---------------------------------------------------------
Chapter 4
C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% Internal Phosphorescence Efficiency in An Organic Light-Emitting Device,” J. Appl. Phys., 90(10), 5048-5051 (2001).
K. A. Osipov, V. N. Pavlovskii, E. V. Lutsenko, A. L. Gurskii, G. P. Yablonskii, S. Hartmann, A. Janssen, H. H. Johannes, R. Caspary, W. Kowalsky, N. Meyer, M. Gersdorff, M. Heuken, P. V. Gemmern, C. Zimmermann, F. Jessen, H. Kalisch, and R. H. Jansen, “Influence of Thermal Annealing on Photoluminescence and Structural Properties of N,N′-diphenyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-4,4′-diamine (α-NPD) Organic Thin Films,” Thin Solid Films, 515(11), 4834-4837 (2007).
T. Murata, Y. Ohno, S. Kishimoto, and T. Mizutani, “Photoluminescence Intensity Enhancement by Electron Beam Irradiation Into GaAs Quantum Wells,” Solid-State Electron., 43(1), 147-152 (1999).
Y. F. Xu, H. J. Zhang, Q. Chen, H. Y. Li, S. N. Bao, and P. M. He, “Thickness Dependent Behavior of Photoluminescence of Tris(8-hydroxyquinoline) Aluminum Film,” Chin. J. Chem. Phys., 19(2), 152-154 (2006).
D. S. Qin, D. C. Li, Y. Wang, J. D. Zhang, Z. Y. Xie, G. Wang, L. X. Wang, and D. H. Yan, “Effects of The Morphologies and Structures of Light-Emitting Layers on The Performance of Organic Electroluminescent Devices,” Appl. Phys. Lett., 78(9), 1225-1227 (2001).
M. Mlinari, H. Rinnert, and M. Vergnat, “Visible Photoluminescence in Amorphous SiOx Thin Films Prepared by Silicon Evaporation Under a Molecular Oxygen Atmosphere,” Appl. Phys. Lett., 82(22), 3877-3879 (2003).
Y. Li, G. W. Meng, and L. D. Zhang, “Ordered Semiconductor ZnO Nanowire Arrays and Their Photoluminescence Properties,” Appl. Phys. Lett., 76(15), 2011-2013 (2000).
Y. Guo, Z. B. Wang, Y. P. Cui, J. Y. Zhang, and Y. H. Ye, “Tris (8-Hydroxyquinoline) Aluminum Nanostructure Film and Its Fluorescence Properties,” Appl. Phys. Lett., 25(12), 4428-4430 (2008).
C. P. Cho, C. Y. Yu, and T. P. Perng, “Growth of AlQ3 Nanowires Directly from Amorphous Thin Film and Nanoparticles,” Nanotechnol., 17(21), 5506-5510 (2006).
H. Rinnert, M. Vergnat, and G. Marchal, “Intense Visible Photoluminescence in Amorphous SiOx and SiOx: H Films Prepared by Evaporation,” Appl. Phys. Lett., 72(24), 3157-3159 (1998).
J. Wan, Z. Wang, X. Chen, L. Mu, and Y. Qian, “Shape-Tailored Photoluminescent Intensity of Red Phosphor Y2O3: Eu3+,” J. Cryst. Growth, 284(3-4), 538-543 (2005).
L. S. Liao, X. M. Bao, Z. F. Yang, and N. B. Min, “Intense Blue Emission from Porous β-SiC Formed on C+-Implanted Silicon,” Appl. Phys. Lett., 66(18), 2382-2384 (1995).
S. S. Chang, S. O. Yoon, H. J. Park, and A. Sakai, “Luminescence Properties of Zn Nanowires Prepared by Electrochemical Etching,” Mater. Lett., 53(6), 432-436 (2002).
G. Gigli, F. D. Sala, M. Lomascolo, M. Anni, G. Barbarella, A. D. Carlo, P. Lugli, and R. Cingolani, “Photoluminescence Efficiency of Substituted Quanterthiophene Crystals,” Phys. Rev. Lett., 86(1), 167-170 (2001).
R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in Conjugated Polymers,” Nature, 397(6715), 121-128 (1999).
C. A. Orme, A. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, and J. J. DeYoreo, “Formation of Chiral Morphologies Through Selective Binding of Amino Acids to Calcite Surface Steps,” Nature, 411(6839), 775-779 (2001).
P. K. Ajikumar, R. Lakshminarayanan, B. T. Ong, S. Valiyaveettil, and R. M. Kini, “Eggshell Matrix Protein Mimics: Designer Peptides to Induce the Nucleation of Calcite Crystal Aggregates in Solution,” Biomacromol., 4(5), 1321-1326 (2003).
D. Yang, L. Qi, and J. Ma, “Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes,” Adv. Mater., 14(21), 1543-1546 (2002).
W Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, and H. Wang, “Novel Photoanode Structure Templated from Butterfly Wing Scales,” Chem. Mater., 21(1), 33-40 (2009).
F. Yi, J. Yu, Z. X. Guo, L. X. Zhang, and Q. Li, “Natural Bioactive Material: A Preparation of Soluble Eggshell Membrane Protein,” Macromol. Biosci., 3(5), 234-237 (2003).
T. Nakano, N. I. Ikawa, and L. Ozimek, “Chemical Composition of Chicken Eggshell and Shell Membranes,” Poultry Sci., 82(3), 510-514 (2003).
W. T. Tsai, J. M. Yang, C. W. Lai, Y. H. Cheng, C. C. Lin, and C. W. Yeh, “Characterization and Adsorption Properties of Eggshells and Eggshell Membrane,” Bioresour. Technol., 97(3), 488-493 (2006).
J. Brake, T. J. Walsh, C. E. Benton, J. N. Petitte, R. Meijerhof, and G. Penalva, “Egg Handling and Storage,” Poultry Sci., 76(1), 144-151 (1997).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 of “Principles of Instrumental Analysis,” Fifth edition, (Thomson Learning, Mississippi, USA, 2001), pp. 549-553.
R. E. Reed-hill, “Analytical Methods,” Chapter 2 of “Physical Metallurgy Principles,” Third Edition, (J. Plant, PWS Publishing Company, Boston, USA, 1994), pp.44-50.
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Carbonyl Compunds,” Chapter 9 of “Introduction to Infrared and Raman Spectroscopy,” 3rd Ed., (Academic Press, USA, 1991), pp. 289-325.
S. S. Zumdahl, “Chemical Principles,” Chapter 22 of “Hydrocarbon Derivatives,” 4th Ed., (Houghton Mifflin Company, Boston, New York, USA, 2002), pp. 991-1047.
J. Z. Lu, I. I. Negulescu, and Q. Wu, “Maleated Wood-Fiber/ High-Density-Polyethylene Composites: Coupling Mechanisms and Interfacial Characterization,” Compos. Interfaces, 12(1-2), 125-140 (2005).
C. Perruchot, J. F. Watts, C. Lowe, R. G. White, and P. J. Cumpson, “Angle-Resolved XPS Characterization of Urea Formaldehyde-Epoxy Systems,” Surf. Interface Anal., 33(10-11), 869-878 (2002).
H. E. Szwarckopf, B. Rousseau, C. Herold, and P. Lagrange, “Sodium-Oxygen Graphite Intercalation Compound: XPS, UPS and STM Study,” Mol. Cryst. Liq. Cryst., 310(1), 231-236 (1998).
C. Malitesta, I. Losito, L. Sabbatini, and P. G. Zambonin, “New Findings on Polypyrrole Chemical Structure by XPS Coupled to Chemical Derivatization Labelling,” J. Electron. Spectrosc. Relat. Phenom., 76(29), 629-634 (1995).
O. A. Louchev, “Formation Mechanism of Pentagonal Defects and Bamboo-Like Structures in Carbon Nanotube Growth Mediated by Surface Diffusion,” Phys. Stat. Sol., 193(3), 585-596 (2002).
Y. K. Kwon, Y. H. Lee, S. G. Kim, P. Jund, D. Tománek, and R. E. Smalley, “Morphology and Stability of Growing Multiwall Carbon Nanotubes,” Phys. Rev. Lett., 79(11), 2065-2068 (1997).
T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, “Self-Assembly of Tubular Fullerenes,” J. Phys. Chem., 99(27), 10694-10697 (1995).
L. S. Hung, and C. H. Chen, “Recent Progress of Molecular Organic Electroluminescent Materials and Devices,” Mater. Sci. Eng., R, 39(5-6), 143-222 (2002).
J. Shinar, “Organic Light-Emitting Devices,” Chapter 3 of “Chemical Degradation and Physical Aging of Aluminum(III) 8-Hydroxyquinoline: Implications for Organic Light-Emitting Dioded and Materials,” (Springer, New York, USA, 2003), pp. 87-88.
-------------------------------------------------------
|