博碩士論文 963204030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.145.94.125
姓名 陳星佑(Hsing-Yu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 巴豆醛於Au/Mg2AlO-hydrotalcite觸媒之液相選擇性氫化反應研究
(Liquid-phase selective hydrogenation of crotonaldehyde on Au/Mg2AlO-hydrotalcite catalysts)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用沉積沉澱法,以Mg2AlO-hydrotalcite為擔體,不預先調整金溶液pH值,將擔體緩慢置入金溶液中,利用擔體本身鹼性特質,提升溶液pH值,製備具高活性的金觸媒,用於巴豆醛選擇性氫化反應研究。
2%Au/Mg2AlO觸媒對C=O鍵有較優勢氫化效果,對C=C鍵之吸附微弱,因此巴豆醛較優勢被選擇氫化成巴豆醇,且無法繼續被氫化成正丁醇,得到選擇率約60%的巴豆醇。而非定域化使得共軛Cδ+ Cδ-鍵會被氫化得到丁醛,具單一C=O鍵的丁醛會繼續被氫化成正丁醇,兩者的選擇率總和保持在約40%。
2%Au/Mg2AlO觸媒,隨著Mg2AlO擔體煅燒溫度升高,觸媒金價態Au3+/Au0比值逐漸降低,巴豆醛反應活性及巴豆醇選擇率隨之降低,在煅燒溫度100°C時,Au3+/Au0比值最高,於巴豆醛氫化反應有最佳活性與選擇率。Au/Mg2AlO觸媒煅燒溫度升高亦有相同趨勢。排除金負載量與金顆粒大小的影響下,Au3+/Au0比值為影響觸媒活性與選擇率之重要因素,Au3+/Au0比值越高,觸媒催化活性與選擇率越好。
不同於第VIII族金屬觸媒,非極性溶劑之反應活性較極性溶劑為佳,且醇類溶劑的碳數增加,有利於反應活性,活性大小依序為環己烷 ≈ 正己烷 ≈ 正庚烷 > 異丙醇 > 戊醇 > 丙醇。提高巴豆醛濃度,選擇率沒有明顯變化,反應活性卻逐漸降低。反應壓力增加可提升反應速率,且巴豆醇選擇率幾乎不變。提升反應溫度可提升轉化率,而巴豆醇選擇率幾乎不受影響。反應溫度超過160°C,反應活性與選擇率驟降,160°C反應後觸媒之Au3+/Au0比值也明顯下降。觸媒中添加鐵、鉬或鎢等促進劑對Au3+/Au0比值影響不大,但皆能促進巴豆醛反應活性且不影響巴豆醇選擇率。
將金擔載於FeOOH、Fe2O3、TiO2、CeO2及γ-Al2O3等擔體,反應活性及Au3+/Au0比值遠不及Au/Mg2AlO觸媒。觸媒經300°C煅燒後,Au3+/Au0比值下降至0,活性普遍下降,唯獨Au/TiO2觸媒活性明顯上升,顯然不同擔體的金觸媒,無法單獨以Au3+/Au0比值來論斷金觸媒之活性,擔體本身的性質也將影響觸媒活性。Au/(MgOx%/Al2O3)觸媒之 Au3+/Au0比值幾近0,但反應活性可以媲美Au/Mg2AlO觸媒,巴豆醇選擇率則遠不及Au/Mg2AlO觸媒,不飽和醇選擇率仍受Au3+/Au0比值之影響。鹼性擔體於液相巴豆醛氫化反應具優勢,可製備具有高活性的金觸媒。
摘要(英) Liquid-phase hydrogenation of crotonaldehyde(UAL) to crotyl alcohol(UOL) was investigated on gold catalysts supported on a solid base of Mg2AlO-hydrotalcite. The Au/Mg2AlO catalysts were prepared using a modified deposition precipitation method without adjusting the pH of the initial HAuCl4 solution.
The 2% Au/Mg2AlO catalyst hydrogenation for C=O bonds were more advantage than C=C bonds. The order of hydrogenation activity for different function groups over 2% Au/Mg2AlO catalyst was C=O (SAL)>C=C/C=O (UAL)>C=C (SOL). The selectivity of UOL was about 60%, and the selectivity of SAL+SOL was about 40%.
Calcination temperatures of the Mg2AlO support and Au/Mg2AlO catalyst determined the ratio of gold states (Au3+/Au0) on the catalyst. A correlation between the gold states and the activity and selectivity of UOL was found. Increasing the Au3+/Au0 ratio of the Au/Mg2AlO catalysts increased the activity and selectivity of UOL.
The effects of various parameters that are involved in the hydrogenation were studied, including the influences of solvent, reaction pressure, concentration of UAL, reaction temperature, and the addition of promoter. Au/Mg2AlO catalyst was different with the conventional hydrogenation catalysts, the activity of non-polar solvents were better than polar solvents. Increasing reaction pressure or decreasing concentration of UOL could improve activity. The activity and selectivity suddenly dropped with the reaction temperature up to 160°C. The doping of Fe significantly enhanced the activity, and slightly increased the selectivity.
Gold catalysts supported on FeOOH, TiO2 and CeO2 also exhibited a high selectivity (> 60%), but they were much less active than that of 2%Au/Mg2AlO. However, the gold states could not determine the activity of gold catalysts with different supports, the nature of support would affect the reaction activity. Gold catalysts supported on a solid base of MgOx%/Al2O3 showed well activity comparing favorable with Au/Mg2AlO catalyst. Using solid base supports could prepare high activity gold catalysts for the liquid-phase hydrogenation of crotonaldehyde.
關鍵字(中) ★ 金觸媒
★ 水滑石
★ 選擇性氫化
★ 巴豆醛氫化
關鍵字(英) ★ Hydrotalcite
★ Selective hydrogenation
★ Crotonaldehyde hydrogenation
★ Gold catalysts
論文目次 摘 要 i
Abstrast iii
誌 謝 v
目 錄 vi
圖 目 錄 ix
表 目 錄 xi
第二章 文獻回顧 4
2-1 金觸媒的發展史 4
2-2 金觸媒的製備方式 5
2-2-1 含浸法(Impregnation) 7
2-2-2 共沉澱法(Coprecipitation) 7
2-2-3 沉積沉澱法(Deposition-precipitation) 8
2-2-4 其他方法 10
2-3 MgxAlO-hydrotalcite擔體 11
2-3-1 MgxAlO-hydrotalcite結構性質 13
2-3-2 MgxAlO-hydrotalcite之製備 14
2-3-3 MgxAlO-hydrotalcite熱處理前後之性質 15
2-3-4 MgxAlO-hydrotalcite觸媒酸鹼性質 16
2-4 α,β-不飽和醛選擇性氫化反應 17
2-4-1 第VIII族過渡金屬 18
2-4-2 鉑觸媒 19
2-4-2-(a) 擔體效應 19
2-4-2-(b) 金屬顆粒大小之影響 22
2-4-2-(c) 促進劑影響 23
2-4-2-(d) 溶劑效應 25
2-4-3 金觸媒 27
2-4-3-(a) 金顆粒的大小與型態 27
2-4-3-(b) 擔體性質 30
2-5 巴豆醛選擇性氫化反應 32
第三章 實驗方法與設備 42
3-1 Mg2AlO-hydrotalcite擔體之製備 42
3-2 觸媒製備程序 43
3-2-1 2 wt% Au/Mg2AlO-hydrotalcite觸媒之製備 43
3-2-2 2 wt% Au/support觸媒之製備 44
3-2-3 2wt% Au/(MgOx%/Al2O3)觸媒之製備 44
3-3 擔體與觸媒性質鑑定 46
3-3-1 元素組成分析(ICP) 46
3-3-2 X-射線繞射分析(XRD) 46
3-3-3 比表面積測定(BET) 47
3-3-4 X-射線光電子光譜(XPS) 48
3-3-6 穿透式電子顯微鏡(TEM) 49
3-4 反應活性測試 50
3-5 實驗藥品及氣體 53
第四章 結果與討論 56
4-1 觸媒製備條件篩選 57
4-2 反應條件之影響 59
4-2-1 溶劑效應 59
4-2-2 巴豆醛選擇性氫化路徑 64
4-2-3 濃度效應 68
4-2-4 壓力效應 70
4-2-5 溫度效應 73
4-3 促進劑效應 78
4-4 擔體效應 82
第五章 結論 91
總 結 93
參考文獻 94
參考文獻 [1] M. Haruta, N. Yamada, T. Kobayashi and S. lijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal. 115 (1989) 301-309.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and B. Delmon, “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, J. Catal. 144 (1993) 175-192.
[3] M. Haruta, “When gold is not noble: catalysis by nanoparticles”, The Chemical Record 3 (2003) 75-87.
[4] A. Schulz and M. Hargittai, “Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules, AuX, Au2X2, AuX3, and Au2X6 (X=F, Cl, Br, I)”, Chem. Eur. J. 7 (17) (2001) 3657-3670.
[5] M. Haruta, “Catalysis of gold nanoparticles deposited on metal oxides”, CATTECH 6 (3) (2002) 102-115.
[6] C. T. Chang, B. J. Liaw, C. T. Huang and Y. Z. Chen, “Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation”, Appl. Catal. A: Gen. 332 (2007) 216-224.
[7] 李東穎, “Pd/hydrotalcite觸媒於苯酚一步合成還己酮之研究”, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1997).
[8] 蔡俊煌, “Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究”, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2002).
[9] 廖志偉, “一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite”, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[10] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones”, Appl. Catal. A: Gen. 149 (1997) 27-48.
[11] N. Mahata, F. Goncalves, M. Fernando, R. Pereira and J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst”, Appl. Catal. A: Gen. 339 (2008) 159-168.
[12] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol”, React. Kinet. Catal. Lett. 35 (1987) 185-193.
[13] M. A. Vannice and B. Sen, “Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum”, J. Catal. 115 (1989) 65-78.
[14] H. Yoshitake and Y. Iwasawa, “Active sites and reaction mechanisms for deuteration of acrolein on TiO2-, Y2O3-, ZrO2-, CeO2 and Na/SiO2- supported platinum catalysts”, J. Chem. Soc. Faraday Trans. 88 (3) (1992) 503-510.
[15] A. Sepúlveda-Escribano, F. Coloma and F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts”, J. Catal. 178 (1998) 649-657.
[16] C. Mohr and P. Claus, “Hydrogenation properties of supported nanosized gold particles”, Sci. Prog. 84 (2001) 311-334.
[17] P. G. N. Mertens, F. Cuypers, P. Vandezande, X. Ye, F. Verpoort, I. F. J. Vankelecom and D. E. De Vos, “Ag0 and Co0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohol fragrances”, Appl. Catal. A: Gen. 325 (2007) 130-139.
[18] P. G. N. Mertens, H. Poelman, X. Ye, I. F. J. Vankelecom, P. A. Jacobs and D. E. De Vos, “Au0 nanocolloids as recyclable quasihomogeneous metal catalysts in the chemoselective hydrogenation of α,β-unsaturated aldehydes and ketones to allylic alcohols”, Catal. Today 122 (2007) 352-360.
[19] P. G. N. Mertens, J. Wahlen, X. Ye, H. Poelman and D. E. De Vos, “Chemoselective C=O hydrogenation of α,β-unsaturated carbonyl compounds over quasihomogeneous and heterogeneous nano-Au0 catalysts promoted by lewis acidity”, Catal. Lett. 118 (2007) 15-21.
[20] J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Rochester, N. V. Richardson, N. Hodge, J. G. Zhang, A. Burrows, C. J. Kiel and G. J. Hutchings, “Hydrogenation of but-2-enal over supported Au/ZnO catalysts”, Phys. Chem. Chem. Phys. 3 (2001) 4113-4121.
[21] R. Zanella, C. Louis, S. Giorgio and R. Touroude, “Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism”, J. Catal. 223 (2004) 328-339.
[22] B. Campo, C. Petit and M. A. Volpe, “Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts”, J. Catal. 0 (2007) 1-8.
[23] E. Bus, R. Prins and J. A. van Bokhoven, “Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts”, Catal. Commun. 8 (2007) 1397-1402.
[24] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti and S. Galvagno, “A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts”, Catal. Today 122 (2007) 341-351.
[25] B. Campo, M. Volpe, S. Ivanova and R. Touroude, “Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts”, J. Catal. 242 (2006) 162-171.
[26] A. G. Sault, R. J. Madix and C. T. Campbell, “Adsorption of oxygen and hydrogen on Au(110)-(1 × 2)”, Surf. Sci. 169 (1986) 347-356.
[27] Ph. Buffet and J-P. Borel, “Size effect on the melting temperature of gold particles”, Phys. Rev. A, 13 (1976) 2287-2298.
[28] G. C. Bond and P. A. Sermon, “Gold catalysts for olefin hydrogenateon”, Gold Bull. 6 (1976) 102-105.
[29] W. C. Li, M. Comotti and F. Schüth, “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation”, J. Catal. 237 (2006) 190-196.
[30] S. Ivanova, V. Pitchon, C. Petit, H. Herschbach, A. V. Dorsselaer and E. Leize, “Preparation of alumina supported gold catalysts: Gold complexes genesis, identification and speciation by mass spectrometry”, Appl. Catal. A: Gen. 298 (2006) 203-210.
[31] F. Moreau, G. C. Bond and A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents”, J. Catal. 231 (2005) 105-114.
[32] V. Ponec and G. C. Bond, “Catalysis by metals and alloys”, Elsevier, Amsterdam, 1996.
[33] M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin and J. Cornejo, “Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity”, Appl. Clay Sci. 18 (2001) 17-27.
[34] U. Costantino, F. Marmottini, M. Sisani, T. Montanari, G. Ramis, G. Busca, M. Turco and G. Bagnasco, “Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol”, Solid State Ion. 176 (2005) 2917-2922.
[35] G. Busca, U. Costantino, F. Marmottini, T. Montanari, P. Patrono, F. Pinzari and G. Ramis, “Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts”, Appl. Catal. A: Gen. 310 (2006) 70–78.
[36] J. J. Yu, J. Cheng, C. Y. Ma, H. L. Wang, L. D. Li, Z. P. Hao and Z. P. Xu, “NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds”, J. Col. Int. Sci. 333 (2009) 423-430.
[37] M. Haruta, “Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications”, Gold Bull. 37 (2004) 27-36.
[38] F. Cavani, F. Trifiro and A. Vacari, “Hydrotalcite-type anionic clays: preparation, properties and applications”, Catal. Today 11 (1911) 173-301.
[39] A. Corma, V. Fornes and F. Rey, “Hydrotalcite as base catalyst: influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol”, J. Catal. 148 (1994) 205-212.
[40] N. Bejoy, “Hydrotalcite: The clay that cures”, Resonance, February (2001) 57-61.
[41] W. T. Reichle, “Catalytic reactions by thermally activated anionic clay minerals”, J. Catal. 94 (1985) 547-577.
[42] A. L. McKenzie , C. T. Fishel and T. J. Davis, “Investigation of the surface structure and basic properties of calcined hydrotalcite”, J. Catal. 138 (1992) 547-561.
[43] D. Tichit , M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini and E. Farronn, “Textural properties and catalytic activity of hydrotalcite”, J. Catal. 151 (1995) 50-59.
[44] C. P. Keikar, and A. A. Schutz, “Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: synthesis and characterization”, Microporous Material 10 (1997) 163-172.
[45] A. Corma, V. Fornes, R. M. Martin-Aranda and F. Rey, “Determination of base properties of hydrotalcite: condensation of benzaldehyde with ethyl acetoacetate”, J. Catal. 134 (1992) 58-65.
[46] R. A. V. Santan and M. Neurock, “Concepts in theoretical heterogeneous catalytic reactivity”, Catal. Rev.-Sci. Eng. 37 (4) (1995) 557-698.
[47] G. Cordier, Y. Colleuille and P. Fouilloux, in Catalyse par les Metaux (B. Imelik et al., eds.), Editions du CNRS, Paris, (1984) 349.
[48] G. Cordier, French Patent F 2,329,628 (1975), to Rhone-Poulene S. A.; Chem. Abstr. 87, 38862s (1997).
[49] U. K. Singh and M. A. Vannice, “Liquid-phase citral hydrogenation over SiO2-supported group VIII metals” J. Catal. 199 (2001) 73-84.
[50] A. Giroir-Fendler, D. Richard, and P. Gallezot, in Heterogeneous Catalysis and Fine chemicals, Studies in Surface Science and Catalysis Vol.41, Elsevier, Amsterdam, (1988) 171.
[51] D. G. Blackmond, A. Waghray, R. Oukaci, B. Blanc and P. Gallezot, “Selective hydrogenation of unsaturated aldehydes over zeolite-supported metals”, Studies in Surface Science and Catalysis Volume 59 (1991) 145-152.
[52] E. Ahumada, H. Lizama, F. Orellana, C. Suárez, A. Huidobro, A. Sepúlveda-Escribano and F. Rodríguez-Reinoso, “Catalytic oxidation of Fe(II) by activated carbon in the presence of oxygen.: Effect of the surface oxidation degree on the catalytic activity”, Carbon 40 (2002) 2827-2834.
[53] M. Consonni, D. Jokic, D. Yu Murzin and R. Touroude, “High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde”, J. Catal. 188 (1999) 165-175.
[54] A. Grioir-Fendler, D. Richard and P. Gallezot, “Chemioselectivity in the catalytic hydrogenateon of cinnamaldehyde: effect of metal particle morphology”, Catal. Lett. 5 (1990) 175-181.
[55] A. J. Plomp, H. Vuori, A. Outi, I. Krause, Krijn P. de Jong and Johannes H. Bitter, “Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde”, Appl. Catal. A: Gen. 351 (2008) 9-15.
[56] M. Englisch, A. Jentys and J. A. Lercher, “Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and TiO2”, J. Catal. 166 (1997) 25-35.
[57] M. Englisch, V. S. Ranade and J. A. Lercher, “Liquid phase hydrogenation of crotonaldehyde over Pt/SiO2”, Appl. Catal. A: Gen. 163 (1997) 111-122.
[58] M. Abid, V. Paul-Boncour and R. Touroude, “Pt/CeO2 catalysts in crotonaldehyde hydrogenation: selectivity, metal particle size and SMSI states”, Appl. Catal. A: Gen. 297 (2006) 48-59.
[59] F. Delbecq and P. Sautet, “Competitive C=C and C=O adsorption of α,β-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: a theoretical approach”, J. Catal. 152 (1995) 217-236.
[60] P. Beccat, J. C. Bertolini, Y. Gauthier, J. Massardier and P. Ruiz, “Crotonaldehyde and methylcrotonaldehyde hydrogenation over Pt(111) and Pt80Fe20(111) single crystals”, J. Catal. 126 (1990) 451-456.
[61] E. V. Ramos-Fernández, A. F. P. Ferreira, A. Sepúlveda-Escribano, F. Kapteijn and F. Rodríguez-Reinoso, “Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support”, J. Catal. 258 (2008) 52-60.
[62] V. Satagopan and S. B. Chandalia, “Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: Part II ”, J. Chem. Tech. Biotechnol. 60 (1994) 17-21.
[63] W. Koo-Amornpattana and J. M. Winterbottom, “Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde”, Catal. Today 66 (2001) 277-287.
[64] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D.Y. Murzin, I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen and J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde”, Appl. Catal. A: Gen. 251 (2003) 385-396.
[65] M. Shirai, T. Tanaka and M. Arai, “Selective hydrogenation of α,β-unsaturated aldehyde to unsaturated alcohol with supported platinum catalysts at high pressures of hydrogen”, J. Mol. Catal. A: Chem. 168 (2001) 99-103.
[66] M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, A. Porras and F. J. Urbano, “Selective liquid-phase hydrogenation of citral over supported palladium”, J. Catal. 172 (1997) 46-54.
[67] I. Kun, G. Szöllösi and M. Bartók, “Crotonaldehyde hydrogenation over clay-supported platinum catalysts”, J. Mol. Catal. A: Chem. 169 (2001) 235-246.
[68] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi and D. Y. Murzin, “Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite”, J. Mol. Catal. A: Chem. 217 (2004) 145-154.
[69] S. Mukherjee and M. A. Vannice, “Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects”, J. Catal. 243 (2006) 108-130.
[70] M. Chatterjee, Y. Ikushima, T. Yokoyama and T. Suzuki, “Effect of heteroatom substituted mesoporous support on the selective hydrogenation of cinnamaldehyde in supercritical carbon dioxide”, Mic. Mes. Mat. 117 (2009) 201-207.
[71] J. Jia, K. Haraki, J. N. Kondo, K. Domen and K. Tamaru, “Selective hydrogenation of acetylene over Au/Al2O3 catalyst”, J. Phys. Chem. B 104 (2000) 11153-11156.
[72] M. Okumura, T. Akita and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts”, Catal. Today 74 (2002) 265-269.
[73] J. E. Bailie and G. J. Hutchings, “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation”, Chem. Commun. (1999) 2151.
[74] S. Schimpf, M. Lucas, C. Mohr., U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister and P. Claus, “Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions”, Catal.Today 72 (2002) 63-78.
[75] C. Mohr, H. Hofmeister and P. Claus, “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein”, J. Catal. 213 (2003) 86-94.
[76] C. Mohr, H. Hofmeister, J. Radnik and P. Claus, “Identification of active sites in gold-catalyzed hydrogenation of acrolein”, J. Am. Chem. Soc. 125 (2003) 1905-1911.
[77] J. Radnik, C. Mohr and P. Claus, “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis”, Phys. Chem. Chem. Phys. 5 (2003) 172-177.
[78] D. V. Sokol’skii, N. V. Anisimova, A. K. Zharmagambetova, S. G. Mukhamedzhanova and L. N. Edygenova, “Pt−Fe2O3 catalytic system for hydrogenation reactions”, React. Kinet. Catal. Lett. 33 (1987) 399-403.
[79] A. Dandekar and M. A. Vannice, “Crotonaldehyde Hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI Catalysts”, J. Catal. 183 (1999) 344-354.
[80] F. Ammari, J. Lamotte and R. Touroude, “An emergent catalytic material: Pt/ZnO catalyst for selective hydrogenation of crotonaldehyde”, J. Catal. 221 (2004) 32-42.
[81] E. Galloway, M. Armbrüster, K. Kovnir, M. S. Tikhov and R. M. Lambert, “Bromine-promoted PtZn is very effective for the chemoselective hydrogenation of crotonaldehyde”, J. Catal. 261 (2009) 60-65.
[82] G. F. Santori, M. L. Casella, G. J. Siri, H. R. Adúriz and O. A. Ferretti, “Hydrogenation of crotonaldehyde on Pt/SiO2 catalysts modified with tin added via surface organometallic chemistry on metals techniques”, Appl. Catal. A: Gen. 197 (2000) 141-149.
[83] 高慶富, “α,β-不飽和醛於 Yttria-Stabilized Zirconia 負載式金屬觸媒之選擇性氫化反應研究”, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1998)
[84] B. C. Campo, S. Ivanova, C. Gigola, C. Petit and M. A. Volpe, “Crotonaldehyde hydrogenation on supported gold catalysts”, Catal. Today 133-135 (2008) 661-666.
[85] S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister and P. Claus, “Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions”, Catal. Today 72 (2002) 63-78.
[86] B. Campo, G. Santori, C. Petit and M. Volpe, “Liquid phase hydrogenation of crotonaldehyde over Au/CeO2 catalysts”, Appl. Catal. A: Gen. 359 (2009) 79-83.
[87] 游焜竣, “Au/MgxAlO-hydrotalcite 觸媒於α,β-不飽和醛選擇性氫化反應之研究”, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2008).
[88] F. Coloma, A. Sepfilveda-Escribano, J. L. G. Fierro and F. Rodriguez-Reinoso, “Crotonaldehyde hydrogenation over bimetallic Pt-Sn catalysts supported on pregraphitized carbon black”, Appl. Catal. A: Gen. 136 (1996) 231-248.
[89] J. L. Margitfalvi, I. Borbáth, M. Hegedűs and A. Tompos, “Preparation of new type of Sn-Pt/SiO2 catalysts for carbonyl activation”, Appl. Catal. A: Gen. 229 (2002) 35-49.
[90] J. C. S. Wu and W. C. Chen, “A novel BN supported bi-metal catalyst for selective hydrogenation of crotonaldehyde”, Appl. Catal. A: Gen. 289 (2005) 179-185.
[91] E. V. Ramos-Fernández, A. Sepúlveda-Escribano and F. Rodríguez-Reinoso, “Enhancing the catalytic performance of Pt/ZnO in the vapour phase hydrogenation of crotonaldehyde by the addition of Cr to the support”, Catal. Commum. 9 (2008) 1243-1246.
[92] J. C. S. Wu , T. S. Cheng and C. L. Lai, “Boron nitride supported PtFe catalysts for selective hydrogenation of crotonaldehyde”, Appl. Catal. A: Gen. 314 (2006) 233-239.
[93] M. B. Kizling, C. Bigey and R. Touroude, “Novel method of catalyst preparation for selective hydrogenation of unsaturated aldehydes”, Appl. Catal. A: Gen. 135 (1996) LJ3-LI7.
[94] M. Arai, A. Obata, K. Usui, M. Shirai and Y. Nishiyama, “Activity for liquid-phase hydrogenation of α,β-unsaturated aldehydes of supported platinum catalysts prepared through low-temperature reduction”, Appl. Catal A: Gen. 146 (1996) 381-389.
[95] Z. M. Michalska, B. Ostaszewski, J. Zientarska and J. M. Rynkowski, “Novel polymer-supported platinum catalyst for selective hydrogenation of crotonaldehyde”, J. Mol. Catal. A: Chem. 185 (2002) 279-283.
[96] R. A. Rajadhyaksha and S. L. Karwa, “Solvent effects in catalytic hydrogenation”, Chem. Eng. Sci. 41(7) (1986) 1765-1770.
[97] P. Maki-Arvela, J. Hajek, T. Salmi and D. Y. Murzin, “Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts-a review”, Appl. Catal. A: Gen. 292 (2005) 1-49.
[98] 江淑媜, “奈米化非晶態NiB觸媒之製備與氫化反應研究”, 國立中央大學, 化學工程與材料工程學系, 博士論文 (2008).
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2009-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明