博碩士論文 963204040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.119.112.154
姓名 陳建佑(Jian-you Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 化學溶液蝕刻法製備大面積規則排列矽單晶奈米柱陣列之研究
(Fabrication of Large-area Periodic Arrays of Single-crystalline Silicon Nanorods by Chemical Wet Etching Processes)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用聚苯乙烯奈米球微影術(Polystyrene Nanosphere Lithography, PS NSL)結合金催化選擇性化學蝕刻法,成功地在(001)矽基材上製備出大面積垂直排列且可調變長度之矽晶奈米柱陣列,並對矽晶奈米柱之晶體結構及反應動力學作深入探討。實驗中也將探究水滴在表面生成奈米柱結構的試片上之潤濕行為及其光學性質之變化。
由掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察可發現,金屬催化選擇性蝕刻所生成之奈米柱不但具有相當好的均一性,且與實驗所用之奈米球模板之直徑相當吻合,其奈米柱寬度約為126 nm。而從TEM影像及其相對應之電子繞射圖形分析鑑定可得知本研究所製備之矽晶奈米柱均為單晶結構,且軸向方向沿著[001]方向生成。此外,藉由一系列SEM橫截面影像觀察,可獲得不同反應溫度及時間下矽晶奈米柱之生成長度變化。藉由量測不同反應溫度下奈米柱之生成速率,可由阿瑞尼士(Arrhenius)關係圖中求得其生成反應活化能約為76.7(kJ/mole)。
經水滴接觸角實驗觀察與分析結果發現,表面生成矽晶奈米柱陣列之試片經HF清洗後呈現相當高的疏水性,其接觸角可達125°-150°,此種因表面奈米柱結構造成接觸角提升的現象可用Cassie Model解釋。利用紫外光-可見光光譜儀分析反應後試片可發現,表面具有奈米柱陣列結構的試片在可見光波長範圍內(400-800 nm)呈現相當低的反射率(﹤5%)。
摘要(英) In the present study, we have demonstrated that large-area, length-tunable arrays of vertically aligned Si nanorod arrays were successfully produced on (001)Si substrates by using the PS nanosphere lithography combined with the Au-assisted selective chemical etching process. The crystal structures, formation kinetics, surface wetting behaviors, and optical properties of the Si nanorods produced have been investigated.
The SEM and TEM examinations revealed that the diameter of the Si nanorods produced was very uniform and observed to be approximately 126 nm, corresponding to that of RIE-reduced PS sphere mask used. Based on the analyses of the TEM image and the corresponding SAED pattern, it can be concluded that all the produced Si nanorods were single crystalline and the Si nanorods formed along the [001] direction. After a series of cross-sectional SEM examinations, the length variations of Si nanorods produced with etching time for various reaction temperatures were obtained. By measuring the formation rates of Si nanorods at different reaction temperatures, the activation energy for the linear formation of Si nanorods could be determined from an Arrhenius plot to be about 76.7 kJ/mole.
The results of the water contact angle measurements indicated that the surfaces of HF-treated Si nanorod arrays exhibited strong hydrophobicity with water contact angle of 125°-150°. The hydrophobic behavior of the HF-treated Si nanorods was discussed in the context of the Cassie model. The UV-Vis analysis results indicated that Si substrate with Si nanorod arrays exhibited low reflection properties (﹤5%) over the visible light range (400-800 nm).
關鍵字(中) ★ 矽晶奈米柱
★ 奈米球微影術
★ 金屬催化蝕刻
★ 單晶矽
關鍵字(英) ★ Metal-assisted Etching
★ Single-crystalline Silicon
★ Silicon Nanorod
★ Nanosphere Lithography
論文目次 目錄..........................................I
第一章 前言及文獻回顧.........................1
1-1 前言......................................1
1-2 矽晶奈米線製備方法........................2
1-2-1 化學氣相沉積法..........................2
1-2-2 金屬輔助化學蝕刻法......................5
1-2-3 金屬催化結合濕式蝕刻法..................5
1-3 奈米球微影術..............................7
1-3-1 奈米球的自組裝行為......................7
1-3-2 奈米球微影術的發展......................7
1-4 接觸角之相關原理與測定....................8
1-4-1 理論架構................................8
1-4-2 動態接觸角..............................10
1-5 研究動機..................................11
第二章 實驗步驟及儀器設備.....................12
2.1實驗步驟...................................12
2-1-1 基材使用前處理..........................12
2-1-2 奈米球模板製備..........................12
2-1-3 以反應性離子蝕刻調變奈米球模板之直徑....13
2-1-4 蒸鍍金屬薄膜............................13
2-1-5 常溫常壓下在矽晶圓上製備矽晶奈米柱陣列..14
2-2 試片分析..................................14
2-2-1 掃描式電子顯微鏡(SEM).................14
2-2-2 影像式接觸角量測儀(Software-Controlled
Multi Dosing System-DSA10)...................14
2-2-3 穿透式電子顯微鏡(TEM).................15
2-2-4紫外光-可見光光譜儀......................15
第三章 結果與討論.............................16
3-1 奈米球模板製備............................16
3-2 利用反應性離子蝕刻調變球徑大小............17
3-3 以金屬催化蝕刻法結合奈米球微影術製備矽單晶
奈米柱陣列................................18
3-4 矽單晶奈米柱之結構及晶向鑑定..............20
3-5 矽單晶奈米柱之反應機制....................21
3-6 以金屬催化蝕刻方式製備矽晶奈米柱陣列之成長
動力學探討................................23
3-7 反應面積對蝕刻速率之影響..................27
3-8 接觸角量測分析............................29
3-9 可見光-紫外光光譜儀量測分析...............31
第四章 結論與未來展望.........................33
4-1 結論......................................33
4-2 未來展望..................................34
4-2-1 在預置規則圖案中成長寬度及長度均可精準控
制之有序排列的矽單晶奈米柱陣列..........34
4-2-2 製備有序排列之金屬矽化物奈米柱陣列結構..35
參考文獻......................................36
圖目錄........................................41
參考文獻 [1] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-Specific Label-Free DNA Sensor Based on Silicon Nanowires,” Nano Lett. 4 (2004) 245-247.
[2] Yi Cui and C. M. Liber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291 (2001) 851-853.
[3] X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, “High-Performance Thin-Film Transistors Using Semiconductor Nanowires and Nanoribbons,” Nature 425 (2003) 274-278.
[4] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Liber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Lett. 3 (2003) 149-152.
[5] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, “Silicon Vertically Integrated Nanowire Field Effect Transistors,” Nano Lett. 5 (2006) 973-977.
[6] C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, “High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nature 3 (2008) 31-35.
[7] C. Zhang, P. Chen, J. Liu, Y. Zhang, W. Shen, H. Xu, and Y. Tang, “Ag Microparticles Embedded in Si Nanowire Arrays: A Novel Catalyst For Gas-Phase Oxidation of High Alcohol to Aldehyde,” Chem. Commun. 28 (2008) 3290-3292.
[8] N. N. Mishra, W. C. Maki, E. Cameron, R. Nelson, P. Winterrowd, S. K. Rastogi, B. Filanoski, and G. K. Maki, “Ultra-Sensitive Detection of Bacterial Toxin with Silicon Nanowire Transistor,” Lab Chip 8 (2008) 868-871.
[9] S. Su, Y. He, M. Zhang, K. Yang, S. Song, X. Zhang, Z. Fan, and S. T. Lee, “High-Sensitivity Pesticide Detection via Silicon Nanowires-Supported Acetylcholinesterase-Based Electrochemical Sensors,” Appl. Phys. Lett. 93 (2008) 023113-1~023113-3.
[10] L. Mu, W. Shi, J. C. Chang, and S. T. Lee, “Silicon Nanowires-Based Fluorescence Sensor for Cu (Ⅱ),” Nano Lett. 8 (2008) 104-109.
[11] H. Wang, X. H. Zhang, D. D. D. Ma, and S. T. Lee, “Large-Scale Silica Nanowire Array Grown on Liquid Tin and Its Applications as Hg (Ⅱ) Scavenger,” Appl. Phys. Lett. 93 (2008) 023119-1~023119-3.
[12] Z. H. Chen, J. S. Jie, L. B. Luo, H Wang, C. S. Lee, and S. T. Lee, “ Applications od Silicon Nanowires Functionalized with Palladium Nanoparticles in Hydrogen Sensors,” Nanotechnology 18 (2007) 345502-1~345502-5.
[13] L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano lett. 7 (2007) 3249-3252.
[14] K. Peng, X. Wang, and S. T. Lee, “Silicon Nanowire Array Photoelectrochemical Solar Cell,” Appl. Phys. Lett. 92 (2008) 163103-1~163103-3.
[15] M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8 (2008) 710-714.
[16] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and Growth Mechanism Study of Self-Assembled Silicon Nanowires Synthesized by Thermal Evaporation,” Chem. Phys. Lett. 337 (2001) 18-24.
[17] Y. J. Chen, J. B. Li, and J. H. Dai, “Si and SiOx Nanostructures Formed via Thermal Evaporation,” Chem. Phys. Lett. 344 (2001) 450-456.
[18] J. Niu, J. Sha, and D. Yang, “Silicon Nano-Wires Fabricated by a Novel Thermal Evaporation of Zinc Sulfide,” Physica E 24 (2004) 178-182.
[19] J. Niu, J. Sha, and D. Yang, “Silcon Nanowires Fabricated by Thermal Evaporation of Silicon Monoxide,” Physica E 23 (2004) 131-134.
[20] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett. 72 (1998) 1835-1837.
[21] Y. H. Tang, Y. F. Zhang, H. Y. Peng, N. Wang, C. S. Lee, and S. T. Lee, “Si Nanowires Synthesized by Laser Ablation of Mixed SiC and SiO2 Powers,” Chem. Phys. Lett. 314 (1999) 16-20.
[22] N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee, “SiO2-Enhanced Synthesis of Si Nanowires by Laser Ablation,” Appl. Phys. Lett. 73 (1998) 3902-3904.
[23] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[24] M. Ishida, T. Kawano, M. Futagawa, Y. Arai, H. Takao, and K. Sawada, “A Si Nano-Micro-Wire Array on Si(001) Substrate and Field Emission Device Applications,” Superlattices Microstruct. 34 (2003) 567-575.
[25] G. S. Doerk, N. Ferralis, C. Carraro, and R. Maboudian, “Growth of Branching Si Nanowires Seeded by Au-Si Surface Migration,” J. Mater. Chem. 18 (2008) 5376-5381.
[26] M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Silicon Quantum-Wires Arrays Synthesized by Chemical Vapor Deposition and its Micro-Structural Properties,” Chem. Phys. Lett. 374 (2003) 542-547.
[27] T. Hanrath and B. A. Korgel, “ Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals,” Adv. Mater. 15 (2003) 437-440.
[28] F. M. Davidson, Ⅲ, R. Wiacek, and B. A. Korgel, “Supercritical Fluid-Liquid-Solid Synthesis of Gallium Phosphide Nanowires,” Chem. Mater. 17 (2005) 230-233.
[29] T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu, and G. G. Siu, “Self-Organized Synthesis of Silver Dendritic Nanostructures via an Electroless Metal Deposition Method,” Appl. Phys. A 81 (2005) 669-671.
[30] V. Schmidt, S. Senz, and U. Gösele, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowire,” Nano Lett. 5 (2005) 931-935.
[31] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Liber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett. 4 (2004) 433-436.
[32] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58 (1998) R16024-R16026.
[33] S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties,” Mater. Sci. Eng., A A286 (2000) 16-23.
[34] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter Modification of Silicon Nanowires by Ambient Gas,” Appl. Phys. Lett. 75 (1999) 1842-1844.
[35] H. F. Yan , Y. J. Xing , Q. L. Hang , D. P. Yu , Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid–Liquid–Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[36] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, and H. J. Kim, “Device Fabrication with Solid–Liquid–Solid Grown Silicon Nanowires,” Nanotechnology 19 (2008) 185701.
[37] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large Area Silicon Nanowire Arrays via Self Assembling Nanolectrochemistry,” Adv. Mater. 14 (2002) 1164-1167.
[38] T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu, and G. G. Siu, “Self-Organized Synthesis of Silver Dendritic Nanostructures via an Electroless Metal Deposition Method,” Appl. Phys. A 81 (2005) 669-671.
[39] K. Peng and J. Zhu, “Morphological Selection of Electroless Metal Deposits on Silicon in Aqueous Fluoride Solution,” Electrochim. Acta 49 (2004) 2563-2568.
[40] K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13 (2003) 127-132.
[41] K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays,” Angew. Chem. Int. Ed. 44 (2005) 2737-2742.
[42] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Funct. Mater. 16 (2006) 387-394.
[43] T. Qiu, X. L. Wu, X. Yang, G. S. Huang, and Z. Y. Zhang, “Self-Assembled Growth and Optical Emission of Silver-Capped Silicon Nanowires,” Appl. Phys. Lett. 84 (2004) 3867-3869.
[44] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768- 3774.
[45] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[46] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[47] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
[48] J. C. Hulteen and R. P. Van Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[49] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[50] J. S. Rowlinson and B. Widom, “Molecular Theory of Capillarity,” OXFORD Science Publications, 66, 816 (1982).
[51] R. N. Wenzel, “Surface Roughness and Contact Angle,” J. Phys. Chem. 53 (1949) 1466-1467.
[52] A. B. D. Cassie and S. Baxter, “Contact Angle,” Trans. Faraday Soc. 40 (1944) 546.
[53] D. Quéré, “Rough Ideas on Wetting,” Physica A 313 (2002) 32-46.
[54] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[55] Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir 18 (2002) 5818-5822.
[56] M. Lundgren, N. L. Allan, and T. Cosgrove, “Modeling of Wetting: A Study of Nanowetting at Rough and Heterogeneous Surfaces,” Langmuir 23 (2007) 1187-1194.
[57] T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, “Super-Water-Repellent Fractal Surfaces,” Langmuir 12 (1996) 2125-2127.
[58] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
[59] D. Wang, G. Zhang, and H. Mohwald, “Nanoembossment of Au Patterns on Microspheres,” Chem. Mater. 18 (2006) 3985-3992.
[60] J. Meichsner, M. Nitschke, R. Rochotzki, and Zeuner, “Fundamental Investigations in Plasma Modification on Polymers,” Surf. Coat. Technol. 74-75 (1995) 227-231.
[61] D. R. Turner, “Electropolishing Silicon in Hydrofluoric Acid Solutions,” J. Electrochem. Soc. 105 (1958) 402-408.
[62] R. W. Fathauer, T. George, A. Ksendzov, and R. P. Vasquez, “Visible Luminescence from Silicon Wafers Subjected to Stain Etches,” Appl. Phys. Lett. 60 (1992) 995-997.
[63] S. Chattopadhyay, X. Li, and P. W. Bohn, “In-Plane Control of Morphology and Tunable Photoluminescence in Porous Silicon Produced by Metal-Assisted Electroless Chemical Etching,” J. Appl. Phys. 91 (2002) 6134-6140.
[64] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, “Au-Assisted Electroless Etching of Silicon in Aqueous HF/H2O2 Solution,” Appl. Surf. Sci. 255 (2009) 6210-6216.
[65] F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, and W. E. Buhro, “Solution-Liquid-Solid Growth of Semiconductor Nanowires,” Inorg. Chem. 45 (2006) 7511-7521.
[66] T. Y. Kim, B. Ingmar, K. Bewilogua, K. H. Oh, and K. R. Lee, “Wetting Behaviours of a-C:H:Si:O Film Coated Nano-Scale Dual Rough Surface,” Chem. Phys. Lett. 436 (2007) 199-203.
[67] Y. Xiu, L. Zhu, D. W. Hess, and C. P. Wong, “Hierarchical Silicon Etched Structures for Controlled Hydrophobicity/Superhydrophobicity,” Nano Lett. 7 (2007) 3388-3393.
[68] A. Winkleman, G. Gotesman, A. Yoffe, and R. Naaman, “Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets,” Nano Lett. 8 (2008) 1241-1245.
[69] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications,” Small 1 (2005) 1062-1067.
指導教授 鄭紹良(Shao-liang Cheng) 審核日期 2009-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明