博碩士論文 963204042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.226.93.207
姓名 羅名譽(Ming-yu Lo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究
(Studies on the Rapid Synthesis and Surface Modification Characteristics of Monodispersed Submicrospheres Containing Core/Shell Structure)
相關論文
★ 高效率染料敏化太陽能電池及製備次模組元件之研究★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜
★ 利用次微米球建構具機械性質之光子晶體薄膜★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究
★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究
★ 含水溶性藥物之乙基纖維素微膠囊的製備★ 銅箔基板環氧樹脂含浸液之研究
★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究
★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體
★ 溶膠-凝膠法製備相轉移材料微膠囊★ 親疏水性光阻製備
★ 奈米多孔性材料之製備★ 分子拓印高分子之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究乃提高無乳化劑乳化聚合之反應溫度至100 ℃,以快速反應來製備具均ㄧ粒徑特性之次微米球,並利用自組裝之方法將其應用於三維光子晶體之組建。
首先,製備聚苯乙烯(PS)及聚甲基丙烯酸正丁酯(PBMA)之均ㄧ粒徑次微米球,且利用共聚合反應合成出具有不同玻璃轉移溫度(Tg)之甲基丙烯酸(MAA)、苯乙烯與甲基丙烯酸正丁酯三元共聚合物次微米球,當苯乙烯單體之重量百分比增加時,便可使高分子之玻璃轉移溫度由30.3 ℃提升至111.6 ℃,另外亦合成具有20%交聯密度之不同玻璃轉移溫度高分子次微米球。另一方面,在第一階段單體轉化率為80%時,進行添加第二階段單體,可製備出具有不同核殻結構之次微米球,包含有P(MAA-co-St)/P(St-co-NaSS)、P(MAA-co-BMA)/P(BMA-co-MMA)、P(MAA-co-BMA)/P(BMA-co-St)及P(MAA-co-BMA)/P(BMA-co-NIPAAm)之核/殼結構次微米球,且其粒徑範圍皆在數百奈米之間。
最後利用溶劑導入法將黑色染料Solvent black 34導入均ㄧ粒徑(Cv值小於4%)次微米球中,製成染料球。以不同粒徑之次微米球或染料球,經毛細力趨動後,可使其自組裝排列形成光子晶體,且其光子能隙(PBG)可涵蓋整個可見光波段及近紅外光範圍,並呈現出不同的結構性色彩。在紫外線-可見光光譜儀鑑定之下,次微米球及染料球以面心立方(FCC)最密堆積後所形成之光子能隙位置與布拉格定律計算之理論值相符合。此外染料球會使光子晶體之結構色彩能更加鮮明;且當乳液以濃縮之方式提升固含量後亦可讓次微米球排列整齊。
摘要(英) Preparation of monodispersed polystyrene (PS), poly(n-butyl methacrylate) (PBMA), various glass transition temperature (Tg) of P(MAA-co-St-co-BMA), and various core/shell submicrospheres by soap-free emulsion polymerization at 100 ℃ have been developed. The application of these monodispersed submicrospheres self-assembled to three dimensional photonic crystals (PCs) has also discussed.
Above all, The various Tg of monodispersed P(MAA-co-St-co-BMA) submicrospheres were successively prepared by copolymerization, the Tg increased from 30.3 ℃ to 111.6 ℃ with increasing the weight fraction of St monomer. Afterward, the various types of core/shell submicrospheres were successfully prepared. The monomer addition experiment was carried out when the conversion was 80%, then, a number of surface modification submicrospheres with a size of several hundreds nanometer were synthesized, such as P(MAA-co-St)/P(St-co-NaSS), P(MAA-co-BMA)/P(BMA-co-MMA), P(MAA-co-BMA)/P(BMA-co-St) and P(MAA-co-BMA)/P(BMA-co-NIPAAm) core/shell submicrospheres.
Finally, the highly monodispersed (Cv value < 4%) dye-containing (≦1.0 wt%, based on polymer) submicrospheres latexes were prepared by introducing the solvent black 34 dye in acetone solution. High quality polymer PCs with one photonic band gap (PBG) that can be controlled in the whole range of the visible and near infrared lights. When the various sizes of monodispersed submicrospheres were self-assembled by capillarity driven, the vivid structure colors were observed. In UV-Vis spectra, the reflection of self-assembled PCs of submicrospheres and dye-containing submicrospheres with the (111) planes in face-centered cubic (FCC) arrangement to confirm with the theoretical value calculated by Bragg’s law. Moreover, the structure color of dye-containing submicrospheres would be more brightly. Comparing with the general case of the solid state PCs, the latex with higher solid content obtained through a centrifugal process would be more helpful to form ordered periodic structure in the aqueous medium.
關鍵字(中) ★ 無乳化劑乳化聚合
★ 均ㄧ粒徑次微米球
★ 表面改質
★ 溶劑導入法
★ 自組裝
★ 光子晶體
關鍵字(英) ★ Photonic crystals
★ Self-assembly
★ Solvent introducing method
★ Surface modification
★ Soap-free emulsion polymerization
★ Monodispersed submicrospheres
論文目次 摘要......................................................I
ABSTRACT.................................................II
謝誌.....................................................IV
目錄......................................................V
圖目錄.................................................VIII
表目錄..................................................XIV
符號說明................................................XVI
第一章 緒論...............................................1
1-1 均一粒徑高分子球之簡介與文獻回顧 ......................1
1-2 表面改質高分子球之簡介與文獻回顧......................2
1-3 染料填充之簡介與文獻回顧..............................3
1-4 光子晶體之簡介與文獻回顧..............................4
1-5 研究動機及目的........................................9
第二章 實驗..............................................10
2-1 實驗藥品.............................................10
2-2 實驗儀器.............................................13
2-3 實驗方法.............................................15
2-3-1 單體精製...........................................15
2-3-2 快速製備具不同核/殼結構之均ㄧ粒徑次微米球..........15
2-3-2-1 聚苯乙烯、聚甲基丙烯酸正丁酯及其共聚合物之高分子核心.......................................................16
2-3-2-2 甲基丙烯酸正丁酯與苯乙烯共聚合物/聚對-苯乙烯磺酸鈉鹽之核/殼結構次微米球....................................17
2-3-2-3 甲基丙烯酸正丁酯與苯乙烯共聚合物/聚氮-異丙基丙烯醯胺之核/殼結構次微米球....................................18
2-3-2-4 聚甲基丙烯酸正丁酯/聚甲基丙烯酸甲酯之核/殼結構次微米球.....................................................19
2-3-2-5 聚甲基丙烯酸正丁酯/聚苯乙烯之核/殼結構次微米球...20
2-3-3 具不同玻璃轉移溫度之交聯型高分子核心...............21
2-3-4 溶脹聚合法製備均ㄧ粒徑微米球.......................22
2-3-5 以溶劑導入法製備次微米染料球.......................23
2-3-6 光子晶體之製備.....................................23
2-4 乳液純化.............................................24
2-4-1 透析...............................................24
2-4-2 離心水洗...........................................24
2-5 儀器分析.............................................24
2-5-1 傅立葉轉換紅外線光譜儀(FTIR)測試條件...............24
2-5-2 掃描式電子顯微鏡(SEM)測試條件......................24
2-5-3 化學分析電子光譜儀(ESCA)測試條件...................25
2-5-4 微差掃描熱分析儀(DSC)測試條件......................25
2-5-5 紫外-可見光光譜儀(UV-Vis)測試條件..................25
2-5-6 動態粒徑分析儀(DLS)測試條件........................26
2-6 樣品之製備與分析情形.................................27
第三章 結果與討論........................................28
3-1 均ㄧ粒徑次微米球之製備與其反應溫度之影響.............29
3-2 具不同玻璃轉移溫度之次微米球製備.....................46
3-2-1 表面型態與粒徑分析.................................48
3-2-2 熱性質分析.........................................48
3-3 二階段法製備表面改質次微米球之研究...................56
3-3-1 以聚對-苯乙烯磺酸鈉鹽為殼層結構之研究..............56
3-3-1-1 二階段添加時間對包覆效率之影響...................57
3-3-1-2 二階段添加量對次微米球穩定性之影響...............67
3-3-1-3 高分子核心對包覆效率之影響.......................73
3-3-2 以聚氮-異丙基丙烯醯胺為殼層結構之研究..............81
3-3-2-1 二階段添加量對包覆效率之影響.....................81
3-3-2-2 高分子核心對包覆效率之影響.......................87
3-3-3 以聚甲基丙烯酸甲酯為殼層結構之研究.................99
3-3-4 以聚苯乙烯為殼層結構之研究........................108
3-4 具不同玻璃轉移溫度之交聯型次微米球合成研究..........119
3-5 次微米球乳液純化之研究..............................128
3-6 以溶劑導入法製備次微米染料球之研究..................136
3-6-1 染料濃度對次微米球粒徑之影響......................136
3-6-2 次微米球粒徑均ㄧ度之探討..........................141
3-7 光子晶體之製備研究與其性質探討......................143
3-7-1 不含染料之次微米球結構對自組裝排列及光學性質之影響143
3-7-2 染料濃度對光學性質之影響..........................150
3-7-3 次微米球固含量對自組裝排列之影響..................159
3-7-3-1 不含染料之次微米球固含量對自組裝排列之影響......159
3-7-3-2 溫度對自組裝排列之影響..........................164
3-7-3-3 次微米染料球固含量對自組裝排列之影響............174
第四章 結論.............................................182
參考文獻................................................185
參考文獻 〔1〕 Z. Z. Gu, H. H. Chen, S. Zhang et al., "Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals", Colloid and Surfaces A: Physicochem. Eng. Aspects, 302, 312-319 (2007).
〔2〕 S. C. Gu, T. Sakamoto, Y. Yamada et al., "Agitation requirement for synthesis of micron-sized monodisperse polymer particles in soap-free polymerization method", Colloid and Polymer Science, 285, 581-586 (2007).
〔3〕 X. Du and J. H. He, "Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization ", Journal of Applied Polymer Science, 108, 1755-1760 (2008).
〔4〕 K. Ishizu, D. H. Lee, Y. Tokuno et al., "Novel synthesis of poly(methyl methacrylate) brush encapsulated silica particles", Journal of Applied Polymer Science, 109, 3968-3974 (2008).
〔5〕 S. B. Jhaveri, D. Koylu, D. Maschke et al., "Synthesis of polymeric core-shell particles using surface-initiated living free-radical polymerization", Journal of Polymer Science Part A:Polymer Chemistry, 45, 1575-1584 (2007).
〔6〕 K. Ishizu, T. Murakami, and S. Takano, "Architecture of brush-on-brush copolymers by photoinduced ATRP approach", Journal of Colloid and Interface Science, 322, 59-64 (2008).
〔7〕 R. E. Behling, B. A. Williams, B. L. Staade et al., "Influence of graft density on kinetics of surface-initiated ATRP of polystyrene from montmorillonite", Macromolecules, 42, 1867-1872 (2009).
〔8〕 B. Yuan and D. A. Wicks, "Thermotropic color changing nanoparticles prepared by encapsulating blue polystyrene particles with a poly-N-isopropylacrylamide gel", Journal of Applied Polymer Science, 105, 446-452 (2007).
〔9〕 Z. F. Liu, T. Ding, G. Zhang et al., "Ternary inverse opal system for convenient and reversible photonic bandgap tuning", Langmuir, 24, 10519-10523 (2008).
〔10〕D. Nagao, M. Yokoyama, N. Yamauchi et al., "Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell", Langmuir, 24, 9804-9808 (2008).
〔11〕E. C. Chen, Y. W. Lin, and T. M. Wu, "Fabrication, morphology and thermal degradation behaviors of conductive polyaniline coated monodispersed polystyrene particles", Polymer Degradation and Stability, 94, 550-557 (2009).
〔12〕W. B. Wu, M. L. Wang, Y. M. Sun et al., "Dual-color polystyrene microspheres by two-stage dispersion copolymerization", Materials Letters, 62, 2603-2606 (2008).
〔13〕 I. M. Povey, M. Bardosova, F. Chalvet et al., "Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems", Surface & Coatings Technology, 201, 9345-9348 (2007).
〔14〕A. C. Edrington, A. M. Urbas, P. DeRege et al., "Polymer-based photonic crystals", Advanced Materials, 13, 421-425 (2001).
〔15〕G. I. N. Waterhouse and M. R. Waterland, "Opal and inverse opal photonic crystals: Fabrication and characterization", Polyhedron, 26, 356-368 (2007).
〔16〕C. K. Huang, C. H. Chan, C. Y. Chen et al., "Rapid fabrication of 2D and 3D photonic crystals and their inversed structures", Nanotechnology, 18, 265305 (2007).
〔17〕 S. Kaur, S. Sahoo, P. Ajayan et al., "Capillarity-driven assembly of carbon nanotubes on substrates into dense vertically aligned arrays", Advanced Materials, 19, 2984-2987 (2007).
〔18〕K. Liu, T. A. Schmedake, and R. Tsu, "A comparative study of colloidal silica spheres: Photonic crystals versus Bragg's law", Physics Letters A, 372, 4517-4520 (2008).
〔19〕 A. J. Wang, S. L. Cheng, P. Dong et al., "Fabrication of colloidal photonic crystals with heterostructure by spin-coating method", Chinese Physics Letters, 26, 024210 (2009).
〔20〕M. H. Kim, S. H. Im, and O. O. Park, "Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly", Advanced Functional Materials, 15, 1329-1335 (2005).
〔21〕T. Kanai, T. Sawada, A. Toyotama et al., "Air-pulse-drive fabrication of photonic crystal films of colloids with high spectral quality", Advanced Functional Materials, 15, 25-29 (2005).
〔22〕Y. K. Lin, P. R. Herman, and W. Xu, "In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction", Journal of Applied Physics, 102, 073106 (2007).
〔23〕H. Wang, K. P. Yan, J. Xie et al., "Fabrication of ZnO colloidal photonic crystal by spin-coating method", Materials Science in Semiconductor Processing, 11, 44-47 (2008).
〔24〕 Y. Z. Zhu, Y. L. Cao, J. Ding et al., "Three-dimensional photonic bandgap crystals of titania hollow spheres at visible wavelengths", Applied Physics A-Materials Science & Processing, 94, 731-734 (2009).
〔25〕 F. Piret, Y. U. Kwon, and B. L. Su, "Silica colloidal crystals with uni- and multi-photonic bandgaps and controlled reflective properties", Chemical Physics Letters, 472, 207-211 (2009).
〔26〕J. Brandrup and E. H. Immergut, Polymer handbook, 3rd ed, A Wiley-Interscience, U S, 1989.
〔27〕 林惠敏,「均ㄧ粒徑次微米染料球之合成與其自組裝排列之研究」,國立中央大學化學工程與材料工程學系碩士論文 (2008)。
指導教授 陳暉(Hui Chen) 審核日期 2009-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明