博碩士論文 963204602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:239 、訪客IP:18.117.77.210
姓名 愛美嘉(Widho-Retno Amijaya)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以chlorosilane改質D4R unit, Si8O208-
(Modification of D4R unit, Si8O208-, with Chlorosilane)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Silsesquioxane是一分子的球型矽化物(spherosilicates),其分子式為[RSiO2.5]n,R為有機或無機官能團,n可介於4及30之間,一般為6、8、10或12。本研究主要是將D4R silicate (Si8O20)8-¬¬以dimethylchlorosilane改質成dimethylsilylated D4R unit ((HSiMe2O)8-Si8O12),或以trimethylchlorosilane改質成trimethylsilylated D4R unit ((SiMe3O)8-Si8O12)。Dimethylsilylated D4R unit ((HSiMe2O)8-Si8O12)可當做中間物用於合成具有化學活性的H-terminated D4R unit,而H-terminated D4R unit可連接其他官能基,如:methacrylate, epoxy group, or long chain alkyl group。
Octaanion的矽烷化(silanation)一般於兩相系統(two phase system)中進行,亦即octaanion的hydrated tetramethyl ammomium salt在水相溶液中,而silane則溶於有機相溶液中進行反應。文獻中以dimethylchlorosilane及trimethylchlorosilane改質的octaanion的產率分別為83%及93%,而octaanion中chlorosilane及Si莫耳比為4:1。根據文獻資料,此反應使用大量過量的chlorosilane,所以此反應系統仍有可改進的空間。
本研究一開始先研究hexane-methanol-water tertiary system的相圖,並確認出其形成單相的區域,之後再測試含有octaanion salt的相界(phase boundary)變化。由研究中所得之含有octaanion salt的hexane-methanol-water tertiary system的單相區域,在反應中有助於octaanion salt的溶解,且有利octaanion salt與silane的反應過程。因此,經由此改質法可得到較高的產率,並減少chlorosilane的使用量。本研究結果以FTIR, DSC, TGA, and NMR等方式鑑定。
摘要(英) Silsesquioxane is molecular spherosilicates with the formula [RSiO2.5]n, where R is an inorganic or organic group and n can be between 4 and about 30, but typically 6, 8, 10 or 12. We focus our effort to modify D4R silicate (Si8O20)8- with dimethylchlorosilane and trimethylchlorosilane to make dimethylsilylated D4R unit ((HSiMe2O)8-Si8O12) and trimethylsilylated D4R unit ((SiMe3O)8-Si8O12) respectively. Dimethylsilylated D4R unit ((HSiMe2O)8-Si8O12) can be used as an intermediate for synthesizing spherical siloxanes owing the chemical reactivity of the a H-terminated D4R unit to connect with another function for example; methacrylate, epoxy group, or long chain alkyl group.
The silanation of octaanion is typically carried out in a two phase system, where the hydrated tetramethyl ammomium salt of octaanion exists in the aqueous phase, while the silane dissolved in an organic phase. The yield for octaanion silanized with dimethylchlorosilane and trimethylchlorosilane was 83% and 93% respectively (molar ratio chlorosilane to Si in octaanion = 4 : 1). Since they used a large excess of chlorosilane, there is a large room to improve the reaction system.
We will start by examining the phase diagram of hexane-methanol-water tertiary system and identify the region where a single phase is formed, and test the shift of phase boundary when octaanion salt is included. The reaction will then be carried out as much as possible in the single phase domain to facilitate the dissolution of the salt as well as its immediate reaction with silane. We believe that through such modification higher yield can be achieved with less amount of chlorosilane. The result will then be characterized with FTIR, DSC, TGA, and NMR.
關鍵字(中) ★ Trimethylsilylated D4R unit
★ Dimethylsilylated D4R Unit
★ Octaanion
★ 改質
★ 的矽烷化
★ D4R Unit
關鍵字(英) ★ Dimethylsilylated D4R Unit
★ Octaanion
★ D4R unit
★ Silanation
★ Modification
★ Trimethylsilylated D4R unit
論文目次 Abstract…………………………………………………………………2
Acknowledgements………………………………………………………3
Table of Contents…………………………………………………….4
List of Figures………………………………………………………………….8
List of Tables………………………………………………………………….10
CHAPTER 1. GENERAL INTRODUCTION AND SCOPE OF THIS THESIS.11
1.1 Silsesquioxane introduction and history………….11
1.1.1 Polyhedral Oligomeric Silsesquioxane (POSS)…….11
1.1.1.1 Introduction……………………………………………..11
1.1.1.2 Classification of POSS…………………………………12
1.1.2 General Step to Synthesis POSS………………………13
1.1.3 History…….…………………………...……………….16
1.2 Synthesis D4R Silicates (Si8O20)8-…………………18
1.2.1 Synthesis D4R silicates by sol-gel approach…….18
1.2.2 Ways to synthesis D4R silicates (Si8O20)8-………19
1.2.3 Property of Octa(tetraammonium)silsesquioxane ([Me4N]8[OSiO1.5]8.xH2O) salt............................21
1.3 Silane functionalized cubic siloxane…………..…22
1.3.1 Silanization Process………………………………………………………………..22
1.3.2 Silanization with different silane…………………22
1.3.2.1 Dimethylsilylated D4R unit ((HSiMe2O)8-Si8O12)…23
1.3.2.1.1 Procedure to synthesize dimethylsilylated D4R unit.....................................................23
1.3.2.1.2 Property of dimethylsilylated D4R unit ((HSiMe2O)8-Si8O12)…..............................................25
1.3.2.2 Trimehtylsilylated D4R unit ((SiMe3O)8-Si8O12)…25
1.3.2.2.1 Procedure to synthesize trimethylchlorosilane D4R unit………….........................................25
1.3.2.2.2 Property of trimethylsilylated D4R unit ((SiMe3O)8-Si8O12)……............................................27
1.4 Scope of this thesis………………………………………………………….......27
CHAPTER 2. EXPERIMENTAL………………………….……………….30
2.1 Materials………………………………………………………..30
2.1.1 TEOS (tetraethylorthosilicate)………………………….30
2.1.2 TMAOH (tetramethylammonium hydroxide)…………………31
2.1.3 Dimethylchlorosilane……………………………………….31
2.1.4 Trimethylchlorosilane………………………………………31
2.1.5 Hexane………………………………………………………………….31
2.1.6 Methanol……………………………………………………….32
2.1.7 Ethanol………………………………….…………………...32
2.2 Reaction and Calculation…………………….………………32
2.2.1 D4R silicates, Si8O208-……………………………………32
2.2.2 Dimethylsilylated D4R unit, ((HSiMe2O)8-Si8O12)….34
2.2.3 Trimethylsilylated D4R unit, ((SiMe3O)8-Si8O12)….35
2.2.4 Dimethyl-trimethylcilylated D4R unit, Si8O20 {SiH(CH3)2}4 {Si(CH3)3}4.....................................36
2.3 Methods……………………………………………………………37
2.3.1 Preparation D4R silicates, (Si8O20)8-………….……37
2.3.2 Silanization of D4R silicates with chlorosilane…..38
2.3.2.1 Dimethylsilylated D4R unit, ((HSiMe2O)8-Si8O12)..38
2.3.2.2 Trimethylsilylated D4R unit, ((SiMe3O)8-Si8O12).39
2.3.2.3 Dimethyl-trimethylsilylated D4R unit, Si8O20 {SiH(CH3)2}4 {Si(CH3)3}4.....................................40
2.4 Characterizations……………..……………………….41
2.4.1 EA (Elemental Analysis)……………..……………………41
2.4.2 FTIR (Fourier Transform Infrared Spectroscopy)..42
2.4.3 Differential Scanning Calorimetry (DSC)………….42
2.4.4 Thermogravimetric Analysis (TGA)………………....42
2.4.5 Nuclear Magnetic Resonance (NMR)……………………42
CHAPTER 3. RESULT AND DISCUSSION…………...…………………52
3.1 D4R silicates, Si8O208-………………………………………52
3.1.1 Elemental Analysis Result…………………………………52
3.1.2 FTIR Spectra of octaanion TMA8 Si8 O20 x H2O…………………………………............................54
3.1.3 Thermal Analysis of octaanion TMA8 Si8 O20 x H2O….55
3.1.4 Solid State 29Si Nuclear Magnetic Resonance…………57
3.2 Silanization of D4R Silicates……………………..……..58
3.2.1 Dimethylsilylated D4R unit……………………………….58
3.2.1.1 FTIR Spectra Result…………………………………….58
3.2.1.2 Nuclear Magnetic Resonance…………………………….60
3.2.1.2.1 Solid State 29Si Nuclear Magnetic Resonance…..60
3.2.1.2.2 Liquid 1H Nuclear Magnetic Resonance…………….61
3.2.1.3 Thermal analysis of dimethylsilylated D4R unit...63
3.2.1.3.1 Thermogravimetric Analysis………………………….63
3.2.1.3.2 Differential Scanning Calorimetry…………………65
3.2.2 Trimethylsilylated D4R unit …………………...………66
3.2.2.1 FTIR Spectra Result………………………………………66
3.2.2.2 Nuclear Magnetic Resonance…………………………….67
3.2.2.2.1 Solid State 29Si Nuclear Magnetic Resonance……67
3.2.2.2.2 Liquid 1H Nuclear Magnetic Resonance…………….69
3.2.2.3 Thermal analysis of trimethylsilylated D4R unit…72
3.2.2.3.1 Thermogravimetric Analysis………………………….72
3.2.2.3.2 Differential Scanning Calorimetry…………………74
3.2.3Dimethyl-trimethylsilylated D4R unit ……………….…75
3.2.3.1 FTIR Spectra Result………………………………………75
3.2.3.2 Differential Scanning Calorimetry……………………77
3.2.3.3 Liquid 1H Nuclear Magnetic Resonance……………….78
CHAPTER 4. CONCLUSION………………………...………………….82
References List……………………………………………………..83
參考文獻 1. Laine RM. Nanobuilding blocks based on the [OSiO1.5](x) (x=6, 8, 10) octasilsesquioxanes. Journal of Materials Chemistry 2005; 15: 3725-44.
2. Lin WJ, Niu YH, Wu WC, Chen WC, Jen AK. Synthesis and properties of Star-Like Polyfluorenes with a silsesquioxane core. Macromolecules 2004; 37: 2335-41.
3. Frye CL, Collins WT. The Oligomeric Silsesquioxanes, (HSiO3/2)n. J.Am.Chem.Soc 1970; 92: 5586-8.
4. Agaskar PA. New Synthetic Route to the Hydridospherosiloxanes Oh-H8Si8O12 and D5H-H10Si10O15. Inorganic chemistry 1991; 30: 2707-8.
5. Bolln C, Tsuchida A, Frey H, Mulhaupt R. Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chemistry of Materials 1997; 9: 1475-9.
6. Crivello JV, Malik R. Synthesis and photoinitiated cationic polymerization of monomers with the silsesquioxane core. Journal of Polymer Science Part A-Polymer Chemistry 1997; 35: 407-25.
7. Nyman MD, Desu SB, Peng CH. T(8)-Hydridospherosiloxanes - Novel Precursors for Sio(2) Thin-Films .1. Precursor Characterization and Preliminary Cvd. Chemistry of Materials 1993; 5: 1636-40.
8. Barry AJ, Daudt WH, Domicone JJ, & Gilkey JW. Crystalline Organosilsesquioxanes. J.Am.Chem.Soc 1955; 77: 4248-52.
9. Lucke S, Stoppek-Langner K. Polyhedral oligosilsesquioxanes (POSS) - building blocks for the development of nano-structured materials. Applied Surface Science 1999; 144-45: 713-5.
10. Brown JF, Vogt LH, Prescott PI. J.Am.Chem.Soc 1963; 86: 1120-4.
11. Voronkov MG, Martynova TN, Mirskov RG, Belyi VI. Zh.Obshch.Khim 1979; 49: 1522-5.
12. Hasegawa I, Ishida M, Motojima S. Synthesis of Silylated Derivatives of the Cubic Octameric Silicate Species Si8O20(8-). Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 1994; 24: 1099-110.
13. Hasegawa I. Silicate Species Formed by Dissolution of (2-Hydroxyethyl)Trimethylammonium Silicate in Water and in Methanol. Zeolites 1992; 12: 720-3.
14. Hasegawa I. Exchange of Si(O-)4 Units in the Cubic Octameric Silicate Species Si8O20(8-) by Mesi(O-)3 Units. Polyhedron 1991; 10: 1097-101.
15. Kawakami Y. Structural control and functionalization of oligomeric silsesquioxanes. Reactive & Functional Polymers 2007; 67: 1137-47.
16. Scott DW. Thermal rearrangement of branched-chain methylpolysiloxanes . J.Am.Chem.Soc. 1946; 68: 356-8.
17. Rowley CN, iLabio GA, arry ST. Theoretical and Synthetic Investigations of Carbodiimide Insertions into Al-CH3 and Al-N(CH3)2Bonds. Inorg.Chem 2009; 44: 1983-91.
18. Brown JF, Vogt LH. The polycondensation of cyclohexylsilanetriol. J.Am.Chem.Soc. 2009; 87: 4313-7.
19. Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ. Silsesquioxane Siloxane Copolymers from Polyhedral Silsesquioxanes. Macromolecules 1993; 26: 2141-2.
20. Hoebbel D, Garzo G, Engelhardt G, Vargha A. Constitution and distribution of silicate anions in aqueous tetramethylammonium silicate solutions. Zeitschrift fuer Anorganische und Allgemeine Chemie 1982; 494: 31-42.
21. Choi J, Harcup J, Yee AF, Zhu Q, Laine RM. Organic/inorganic hybrid composites from cubic silsesquioxanes. Journal of the American Chemical Society 2001; 123: 11420-30.
22. Hasegawa I, Ino K, Ohnishi H. An improved procedure for syntheses of silyl derivatives of the cubeoctameric silicate anion. Applied Organometallic Chemistry 2003; 17: 287-90.
23. Hasegawa I, Kuroda K, Kato C. The Effect of Tetraalkylammonium Ions on the Distribution of the Silicate Anions in Aqueous Solutions. Bulletin of the Chemical Society of Japan 1986; 59: 2279-83.
24. Groenen EJJ, Kortbeek AGTG, Mackay M, Sudmeijer O. Double-ring silicate anions in tetraalkylammonium hydroxide/silicate solutions; their possible role in the synthesis of silicon-rich zeolites. Zeolites 1986; 6: 403-11.
25. Thouvenot R, Herve G, Guth JL, Wey R. Silicon-29 nuclear magnetic resonance study of factors affecting the formation of the silicate (Si8O208-) anion in basic silicate solutions. Nouveau Journal de Chimie 1986; 10: 479-86.
26. Schlenkrich F, Beil E, Rademacher O, Scheler H. Silicate constitution in trimethyl- and triethyl-2-hydroxyethylammonium silicate solutions. Zeitschrift fuer Anorganische und Allgemeine Chemie 1984; 511: 41-50.
27. Asuncion MZ, Hasegawa I, Kampf JW, Laine RM. The selective dissolution of rice hull ash to form [OSiO1.5]8[R4N]8 (R=Me,CH2CH2OH) octasilicates. Basic nanobuilding blocks and possible models of intermediates formed during biosilicification processes. Journal of Materials Chemistry 2005; 15: 2114-21.
28. Hagiwara Y, Shimojima A, Kuroda K. Alkoxysilylated-derivatives of double-four-ring silicate as novel building blocks of silica-based materials. Chemistry of Materials 2008; 20: 1147-53.
29. Choi J, Yee AF, Laine RM. Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 2003; 36: 5666-82.
30. Iglesias M, Gonzalez-Olmos R, Salvatierra D, Resa JM. Analysis of methanol extraction from aqueous solution by n-hexane: Equilibrium diagrams as a function of temperature. Journal of Molecular Liquids 2007; 130: 52-8.
31. Dias NL, Cardoso CX, de Aquino HA. Relationships between the curing conditions and some mechanical properties of hybrid thermosetting materials. Journal of the Brazilian Chemical Society 2006; 17: 935-43.
32. Zhang CX, Laine RM. Hydrosilylation of allyl alcohol with [HSiMe2OSiO1.5](8): Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites. Journal of the American Chemical Society 2000; 122: 6979-88.
33. Dhir RK, Hewlett PC, Csetenyi LJ. Innovation and Developments in Concrete Materials and Construction. 2002.
指導教授 蔣孝澈(Anthony S.T. Chiang) 審核日期 2009-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明