博碩士論文 93621021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.133.111.29
姓名 謝瑩薰(Ying-Hsun Hsieh)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 利用兩層模式的位渦探討冬季中緯度綜觀尺度特徵
(Using potential vorticity of two layer model to explore the characteristics of winter midlatitude synoptic-scale system.)
相關論文
★ NCEP重新分析資料中的有限時間不穩定與伴隨的奇異模★ 利用台灣測站資料進行短期氣候統計預報之研究
★ NCEP月平均資料的經驗正交模分析★ NCEP五日侯平均資料的經驗正交模分析
★ 旬到月尺度統計預報模式的發展★ 影響熱帶海溫演變的主要下表層變數
★ 季節循環、聖嬰現象與全球氣候變遷之間交互作用的探討★ 資料時空前置處理對主成份分析法的影響: 一個基於AO和NAO訊號之研究
★ CMIP5多模式系集年代際預報實驗對熱帶地區的年際預報能力與偏差校正的探討★ 改進改進地表溫度在季節預報的技術
★ 應用秩等級分布恆常性於氣候預測的可行性研究與層位渦收支分析初探
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 位渦與地面位溫在中緯度綜觀尺度系統的動力過程中扮演非常重要的角色。可是單一的等壓面或等熵面分析並無法把位渦與地面位溫的整體貢獻同時呈現出來,因此在研究綜觀尺度天氣系統時,我們通常仍需綜合不同的等壓面或等熵面分析才能對其動力過程有比較完整的瞭解。本研究利用位溫310K作為交界面將對流層大氣簡化為兩層系統。其主要目的是探討層位渦(Layered potential vorticity,LPV) 是否可以比等熵位渦(Isentropic potential vorticity,IPV)更清晰而簡潔的表現出中緯度綜觀尺度天氣系統的特徵與動力過程。
本研究分成兩個主要部份。第一部份是,經由比較2001年一月每天四筆的下對流層位渦、衛星雲圖、1000 hPa的重力位高度場、和TRMM的降水資料,來驗證層位渦是否可以適當的表現出中緯度綜觀尺度天氣系統的強度、位置、發展、移動、和降水的特徵。第二部份是利用上下對流層的局地位渦南北梯度來探討局地斜壓穩定度與綜觀尺度天氣系統的發展的關聯性。結果顯示,下對流層位渦與衛星雲圖、1000 hPa的重力位高度場、或降水都有相當好的一致性。位渦極大值與溫帶氣旋的中心、低壓槽、鋒面和雨帶都配合的很好而低位渦則與高壓脊有明顯的相關。另一方面,經由蒙地卡羅檢驗(Monte Carlo test)得知,局地斜壓穩定度與綜觀尺度天氣系統的強度在統計上具有顯著的相關。也就是說,在不穩定狀態下的系統強度會比穩定時來的強。
本研究的結果顯示,層位渦的確可以比等熵位渦更清晰而簡潔的表現出中緯度綜觀尺度天氣系統的特徵與動力過程。另一方面,我們也發現層位渦也與在熱帶地區的擾動有相當一致的表現。因此層位渦分析是一個研究綜觀尺度擾動的動力過程非常好的工具。
摘要(英) The potential vorticity (PV) on each isentropic surface and potential temperature at the lower boundary play important roles in dynamic process of midlatitude synoptic-scale systems. But single isobaric surface or isentropic surface can not represent both PV and potential temperature at the same time. We need understand the dynamic process by combining variant isobaric or isentropic surfaces when exploring the synoptic-scale system. In this paper, we use 310K isentropic surface as the interface to simplify the atmosphere into a two layer system. The main purpose is to explore whether the layered potential vorticity (LPV) can represent the characteristic and dynamic process of midlatitude synoptic-scale system more clearly and concisely than isentropic potential vorticity (IPV).
This study is divided into two parts. The first part is, by comparing LPV of lower troposphere with satellite image, 1000 hPa geopotential height, and TRMM rainfall data, during January 2001, to examine whether LPV can show appropriately the characteristics of intensity, position, growth, movement and precipitation of midlatitude synoptic-scale system. The results clearly shows lower troposphere is consistent with satellite image, 1000 hPa geopotential height, and precipitation. The maximum of PV is well-matched with the extratropical cyclone center, low pressure trough, front and rain belt. Similarly, low PV has salient relation with high pressure ridge. The second part is by computing local meridional PV gradients of upper and lower troposphere to get stability, then comparing the pressure of weather systems in stable and unstable status to explore the connection between the local baroclinic instability and the growth of synoptic-scale system. From Monte Carlo test, local baroclinic instability has highly relationship with the intensity of synoptic-scale system. In other words, the system intensity in unstable status is stronger then stable status.
In summary, this study indeed shows LPV can represent the characteristics and dynamic process of midlatitude synoptic-scale system more clearly and concisely than IPV. Besides, we also discover that LPV consistent with perturbation in tropical area pretty well. Thus, LPV is a very good tool in studying the dynamic process of system.
關鍵字(中) ★ 兩層模式
★ 斜壓不穩定
★ 位渦
關鍵字(英) ★ two layer model
★ baroclinic instability
★ potential vorticity
論文目次 摘要………………………………………………………………………i
Abstract……………………………………………………………… ii
誌謝……………………………………………………………………iii
目錄…………………………………………………………………… iv
附圖說明……………………………………………………………… vi
第一章 前言……………………………………………………………1
1.1 研究動機……………………………………………………1
1.2 研究方向……………………………………………………2
1.3 研究目的……………………………………………………3
第二章 資料處理與分析方法…………………………………………5
2.1 資料來源……………………………………………………5
2.2 兩層模式邊界的選定………………………………………6
2.3 分析方法……………………………………………………7
第三章 位渦的綜觀尺度特徵……………………………………… 11
3.1 位渦與鋒面雲帶………………………………………… 11
3.2 位渦與天氣系統特徵和降水分佈的分析……………… 12
3.2.1 位渦與1000hPa 重力位高度場…………………… 13
3.2.2 位渦與降雨分佈…………………………………… 18
第四章 穩定度與斜壓系統發展的關聯性………………………… 21
4.1 穩定度與氣壓分佈的關係……………………………… 21
4.2 檢驗統計上的意義……………………………………… 22
iv
第五章 結論與展望………………………………………………… 25
5.1 結論……………………………………………………… 25
5.2 未來展望………………………………………………… 28
參考文獻……………………………………………………………… 29
附圖…………………………………………………………………… 31
參考文獻 林金輝,1995:等熵二層模式的斜壓不穩定之研究。國立中央大學大氣物理研究所碩士論文,1-29頁。
Gulev, S. K., O. Zolina, and S. Grigoriev, 2001: Extratropical cyclone
variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795-809.
Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412-417.
Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd edition . Chapter 6, 8, Academic Press, San Diego, 141-182, 228-258.
Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041-1061
, 1997: A potential vorticity view of synoptic development. Meteor. Appl., 4, 325-334.
, M. E. McIntyre, and A. W. Robertoson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946.
Hummon, J. M., and T. Rossby, 1998: Spatial and temporal evolution of a Gulf Stream crest-warm core ring interaction. J. Geophys. Res., 103, 2795-2809.
Johnson, D. R., and R. D. Townsend, 1985: The thermally coupled response of the planetary scale circulation to global distribution of heat sources and sinks. Tellus, 37A, 106-125.
Kasahara, A., 1980: Influence of orography on the atmospheric general circulation. In “Orographic effects in planetary flow ”, World Meteorological Organization, GARP Publications series No.23, 4-49.
McPherson, R. D., Berhman, K. H., Kistler, R. E., Rasck, G. E. and Gordon, D. S., 1979: The NMC operational gloabal data assimilation system. Mon. Wea. Rev. 107, 1445-1461.
Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd edition, Spring-Verlag, 710pp.
Rossby, C. G., 1937: Isentropic analysis. Bull. Am. Met. Soc., 18, 201-209.
Yoshida A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific Ocean. Mon. Wea. Rea., 132, 1121-1142.
Zhang X., and J. H. Walsh, 2004: Climatology and interannual variability of arctic cyclone activity: 1948-2002. J. Climate, 17, 2300-2317.
指導教授 李永安(Yung-An Lee) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明