博碩士論文 87322051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.143.5.161
姓名 楊志文(Chin-Wen Yang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 全機率土壤液化評估法之研究
(A Study on Full Probabilistic Analysis of Evaluating Soil Liquefaction Potential)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 基樁軸向承載之依時行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將土壤液化潛能評估法分成兩個方向來加以探討研究,第一部分是驗証傳統的簡易土壤液化評估法,並發展新的簡易土壤液化評估法,第二部分是以機率與統計的方式發展一套完整的全機率土壤液化評估法,並應用於實際工程之液化潛能風險評估。
本研究蒐集共669組的SPT-N、388組的CPT-qc及250組的震測VS現地液化與非液化案例資料,以預判準確率與至少液化安全係數誤差指標,來驗証現有液化評估法之適用性,並利用這些資料建立一套物理意義較明確的TAI液化評估法。驗証結果顯示,SPT-N法以Seed法、NCEER法及TAI法為較佳之方法;CPT-qc法以NCEER法、Juang法與TAI法為較佳之方法;而震測VS法則以TAI法為較佳之方法。
傳統的液化評估法以安全係數的大小為液化潛能的評估標準,安全係數的要求則由工程師之經驗判斷。本研究利用所蒐集的現有液化案例資料庫,以Seed’85法及一次二階矩法為基礎,將影響土壤液化評估結果之主要參數的變異性量化,建立單一地震事件之土壤液化可靠度分析法。再進一步結合地震危害度與土壤液化可靠度分析法,建立完整考量地震發生與土壤液化強度變異性的全機率土壤液化評估法。最後以價值工程的觀念,建立一套土壤液化風險評估法,期望能為液化防治工程建立一套具有風險價值意義的決策分析方法。
摘要(英) This research examines the existing methods of evaluating soil liquefaction potential and seeks to develop new methods of evaluation. In the first part of the study, it verifies the traditional simplified methods for evaluating soil liquefaction and develops a new simplified method. In the second part of the study, a full probabilistic method of evaluating soil liquefaction is developed and applied to liquefaction risk analysis.
In total, there are 669 sets of SPT-N data, 388 sets of CPT-qc data, and 250 sets of shear wave velocity data on liquefaction and non- liquefaction case histories used in this research. Based on this data, a new simplified method for evaluating soil liquefaction called the “TAI method” is established that can use either SPT-N, CPT-qc or shear wave velocity data (Vs). Two indexes - the accuracy of prediction and the index of the at least error of safety factor - are used to verify the traditional simplified methods and compare them with the TAI method. The results show that the choice of the evaluation method used should be dependent on the type of data collected. The Seed method, NCEER method and TAI method work best for SPT data. The NCEER method, Juang method and TAI method are the best predictors for CPT data and the TAI method is the best choice for Vs data.
The traditional method for evaluating soil liquefaction assesses the liquefaction potential based on the safety factor it produces. However, criterion of safety factor adopted should depend on engineering’s experience. This study presents a reliability analysis method based on the popular Seed ’85 method and well known "first order, second moment" method. This method quantifies the variance of main factors affecting the result of soil liquefaction assessments from the liquefaction and non-liquefaction case histories. Next, a full probabilistic model of evaluating soil liquefaction is built by combining the reliability analysis of liquefaction method with earthquake hazard analysis. The model also takes into account the variance in the occurrences of earthquakes and the variance of soil resistance. Finally, monetary values are attached to the various outcomes of the model in order to establish a complete soil liquefaction risk analysis and decision making methodology.
關鍵字(中) ★ 土壤液化
★ 地震危害度
★ 機率
★ 風險分析
關鍵字(英) ★ soil liquefaction
★ seismic hazard analysis
★ probability
★ risk analysis
論文目次 摘 要 I
Abstract II
誌 謝 IV
目 錄 VI
表 目 錄 X
圖 目 錄 XII
符 號 說 明 XVIII
第一章 緒 論 1
1.1 研究背景 1
1.2 研究目的與動機 2
1.3 研究內容與流程 3
第二章 土壤液化定值分析法之驗證 5
2.1 各類液化評估方法 6
2.2 各學者建議之簡易液化評估法 7
2.1.1 SPT-N液化評估法 7
2.1.2 CPT-qc液化評估法 10
2.1.3 震測VS液化評估法 17
2.3 本研究建議之簡易液化評估法 21
2.3.1 本研究建議之SPT-N液化評估法 21
2.3.2 本研究建議之CPT-qc液化評估法 23
2.3.3 本研究建議之震測VS液化評估法 25
2.4 現地案例資料庫 28
2.4.1 SPT-N案例資料 28
2.4.2 CPT-qc案例資料 31
2.4.3 震測VS案例資料 33
2.5 臨界液化強度曲線之比較 35
2.5.1 SPT-N法土壤液化強度曲線之比較 35
2.5.2 CPT-qc法土壤液化強度曲線之比較 38
2.5.3 震測VS法土壤液化強度曲線之比較 41
2.6 其它影響液化評估結果之因素 43
2.6.1 細料對土壤抗液化強度之影響 43
2.6.2 應力折減因子rd之比較 46
2.6.3 規模修正因子MSF之比較 47
2.6.4 小結 49
2.7 評估指標與驗證結果 50
2.7.1 評估指標 50
2.7.2 案例驗證結果與建議 52
2.8小結 71
第三章 土壤液化可靠度分析 101
3.1 前言 101
3.2 土壤液化可靠度分析模式 103
3.3 地震反覆剪應力比之機率密度函數 108
3.4 土壤抗液化強度之機率密度函數 110
3.4.1 邏輯式迴歸 111
3.4.2 機率密度函數之推導 112
3.4.3 平均值計算之簡化 113
3.4.4 安全係數之機率密度分布函數 115
3.5 抗液化安全係數與液化機率之關係 116
3.6 新化斷層附近液化案例分析 118
3.6.1 工址介紹 118
3.6.2 單層土壤液化機率 119
3.7 小結 120
第四章 全機率土壤液化分析法 129
4.1 全機率土壤液化分析法 129
4.2 全機率液化分析法之架構 131
4.2.1 全機率液化分析法的觀念 131
4.2.2 土壤液化可靠度分析方法 132
4.2.3 地震事件之模擬 135
4.2.4 全機率土壤液化分析法 138
4.3 多層土壤液化潛能評估法 140
4.3.1 多層土壤液化機率 140
4.3.2 多層土壤液化潛能指數PL之機率 140
4.3.3 多層土壤液化後沉陷量S之機率 143
4.4 多層土之案例分析 146
4.5 小結 148
第五章 液化風險分析 165
5.1 前言 165
5.2 液化風險分析模式 165
5.3 現地案例計算 167
5.3.1 霧峰太子城堡案例分析 167
5.3.2 中二高名間收費站案例分析 174
5.3.3 員林崙雅里案例分析 176
5.4 小結 179
第六章 結論與建議 194
6.1 結論 194
6.2 建議 195
參 考 文 獻 197
附 錄
參考文獻 1.Andrus, D.R. and Stokoe II, K.H.(2001), “Liquefaction resistance of soils from shear-wave velocity,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 11, pp. 1015-1025.
2.Ambraseys, N.N.(1988), “Engineering seismology,” Earthquake Engineering and Structural Dynamics, Vol.17, pp.1-105.
3.Arango, I.(1996), “Magnitude scaling factors for soil liquefaction evaluations,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 11, pp. 929-936.
4.Boulanger, R.W., Mejia, L.H., and Idriss, I.M.(1997), “Liquefaction at moss landing during Loma Prieta earthquake,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 5, pp. 453-467.
5.Campbell, K.W.(1981), “Near-source attenuation of peak horizontal acceleration,” Bulletin of the Seismological Society of Aerica, Vol. 71., No. 6, pp. 2039-2070.
6.Chameau, J.L. and Clough, G.W.(1983), “Probabilistic pore pressure analysis for seismic loading,” Journal of Geotchnical Engineering, ASCE, Vol. 109, No. 4, pp. 491-497.
7.Christian, J.T., and Swiger, W.F.(1975), “Statistics of liquefaction and SPT results,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT11, pp. 1135-1150.
8.Cornell, C.A.(1968), “Engineering seismic risk analysis,” Bulletin of the Seismological Society of America, Vol. 58, No. 5, pp. 1583-1606.
9.Castro, G. and Poulos, S.J.(1977), “Factors affecting liquefaction and cyclic mobility,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 103, No. 6, pp. 501-516.
10.De Alba, P., Chan, C.K. and Seed, H.B.(1975), “Determination of soil liquefaction characteristics by large-scale laboratory tests,” EERC Report 75-14, Earthquake Engineering Research Center, University of California, Berkeley, CA.
11.Dobry, R., Stokoe, K.H.,Ⅱ, Ladd, R.S. and Youd, T.L.(1981), “Liquefaction susceptibility from S-wave velocity,” Proc., In Situ Testing to Evaluate Liquefaction Susceptibility, ASCE National Convention, held in St. Louis, MO.
12.Duncan, J.M.(2000), “Factors of safety and reliability in geotechnical engineering,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 4, pp. 307-316.
13.Fardis, M.N., and Veneziano, D.(1982), “Probabilistic analysis of deposit liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No. GT3, pp. 395-417.
14.Goh, A.T.C.(1996), “Neural-network modeling of CPT seismic liquefaction data,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 1, pp. 70-73.
15.Gu, W., and Wang, Y. (1984), “An approach to the quadratic nonlinear formulae for predicting earthquake liquefaction potential by stepwise discriminant analysis,” Proc., 8th World Conference on Earthquake Engineering, San Francisco, Calif., Vol. 3, 119-126.
16.Haldar, A., and Tang, W.H.(1979), “Probabilistic evaluation of liquefaction potential,” Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. 2, pp.145-163.
17.Hwang, J.H. and Chen, C.H. (1995), “Study on stress reduction factor rd for liquefaction analysis”, Proceedings of the First Inter-national Conference on Earthquake Geo-technical Engineering, pp. 617-622.
18.Hwang, Jin-Hung, and Yang, Chin-Wen(2001), “Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data ,” Soil Dynamics and Earthquake Engineering, Vol. 21, pp. 237-257.
19.Idriss, I.M.(1990), “Earthquake ground motions at soft soil sites,” Proceedings, 11th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Vol. 3, pp. 2265-2271.
20.Ishihara, K., Muroi, T., and Towhata, I.(1989), “In-situ pore water pressures and ground motions monitored during the 1985 Chiba-Ibaragi earthquake,” Soils and Foundations, Vol. 29, No. 4, pp. 75-90.
21.Ishihara, K. and Yoshimine, M.(1992), “Evaluation of settlements in sand deposits following liquefaction during earthquake,” Soils and Foundations, Vol. 32, No. 1, pp. 173-188.
22.Ishihara, K.(1996), Soil Behavior in Earthquake Geotechnics, Oxford University Press Inc., New York.
23.Iwasaki, T (1990), “Summary report on the Loma Prieta earthquake of October 17, 1989”. Proceedings of the 22nd Joint Meeting of the U.S.-Japan Cooperative Program in Natural Resources Panel on Wind and Seismic Effects, National Inst. of Standards and Technology, Gaithersburg, Maryland, pp. 363-374.
24.Iwasaki, T., Arakawa, T. and Tokida, K.(1982), “Simplified procedures for assessing soil liquefaction during earthquakes,” Proceedings of the Conference on Soil Dynamics & Earthquake Engineering, Southampton, pp. 925-939.
25.Juang, C.H., Rosowsky, D.V., and Tang, W.H.(1999), “A reliability-based method for assessing liquefaction potential of sandy soils,” Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE, Vol. 125, No. 8, pp. 684-689.
26.Juang, C.H., Cheng, C.J., Tang, W.H., and Rosowsky, D.V.(2000), “CPT-based liquefaction analysis, part 1: Determination of limit state function,” Geotechnique, Vol. 50, No. 5, pp. 583-592.
27.Juang, C.H., Cheng, C.J., Rosowsky, D.V., and Tang, W.H.(2000), “CPT-based liquefaction analysis, part 2: Reliability for design,” Geotechnique, Vol. 50, No. 5, pp. 593-599.
28.Juang, C.H., Yuan, H., Lee, D.H. and Ku, C.S.(2002), “Assessing CPT-based methods for liquefaction evaluation with emphasis on th cases from Chi-Chi, Taiwan, earthquake,” Soil Dynamics and Earthquake Engineering, No. 22, pp. 241-258.
29.Kayabali, K.(1996), “Soil liquefaction evaluation using shear wave velocity,” Engineering Geology, Vol. 44, pp. 121-127.
30.Kayen, R.E., Mitchell, J.K., Lodge, A., Seed, R.B., Nishio, S., and Coutinho, R.(1992), “Evaluation of SPT-, CPT-, and shear wave-based methods ofr liquefaction potential assessment using Loma Prieta data,” Proceedings, 4th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Technical Report NCEER-94-0019, Edited by M. Hamada and T.D O-Rourke, Vol. 1, pp. 177-204.
31.Kramer, S.L.,(1996), Geotechnical Earthquake Engineering, Prentice Hall, Upper Saddle River, NJ.
32.Ladd, R.S.(1982), “Geotechnical laboratory testing program for study and evaluation of liquefaction ground failure using stress and strain approaches :Heber road site, October 15,1979 Imperial Valley earthquake,” Woodward-Clyde Consultants, Wayne, New Jersey.
33.Liao, S.S.C., Veneziano, D., and Whitman, R.V.(1988), “Regression models for evaluating liquefaction probability,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 4, pp. 389-411.
34.Liu, A.H., Stewart, J.P., Abtahamson, N.A., and Moriwaki, Y. (2001), “Equivalent number of uniform stress cycles for soil liquefaction analysis,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 12, pp. 1017-1026.
35.Lodge, A.L.(1994), “Shear wave velocity measurements for aubsurface xharacterization,” Ph.D. Dissertation, University of California at Berkeley.
36.Loh, C.H., and Cheng, C.R.(1995), “Probabilistic evaluation of liquefaction potential under earthquake loading,” Soil Dynamic and Earthquake Eegineering, Vol. 16, pp. 269-278.
37.Ishihara, K. (1997), “Geotechnical aspects of the 1995 Kobe earthquake”, Terzaghi Oration, Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg.
38.National Research Council (NRC), 1985, Liquefaction of Soils During Earthquake, National Academy Press, Washington, D.C.
39.Newmark, N.M., and Hall, W.J.(1982), Earthquake spectra and design, Earthquake Engineering Research Institute, Berkeley, California.
40.Olsen, R.S., and Malone, P.G. (1988), “Soil classification and site characterization using the cone penetration test,” Penetration Testing 1988, ISOPT-1, Edited by De Ruiter, Balkema, Totterdam, Vol. 2, pp. 887-893.
41.Olsen, R.S., and Koester, J.J. (1995), “Prediction of liquefaction resistance using the CPT,” Proceedings, International Symposium on Cone Penetration Testing, CPT’95, Linkoping, Sweden, Vol. 2, pp. 251-256.
42.Onoue, A. and Mori, N. and Takano, J.(1987), “In-situ experiment and analysis on well resistance of gravel drains,” Soils and Foundations, Vol. 27, No. 2, 42-60.
43.Rahman, M.S. and Zahaby, K.M.(1997), “Probabilistic liquefaction risk analysis including fuzzy variables,” Soil Dynamics and Earthquake Engineering, Vol. 16., pp. 63-73.
44.Robertson, P.K., and Campanella, R.G.(1983), “SPT-CPT correlations,” Journal of Geothchnical Division, ASCE, Vol. 109, No. 11, pp. 1449-1459.
45.Robertson, P.K. and Campanella, R.G. (1985), “Liquefaction potential of sands using the CPT,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 3, pp. 384-403.
46.Robertson, P.K.(1990), “Soil classification using the CPT,” Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 151-158.
47.Robertson, P.K. and Wride, C.E.(1998), “Evaluation cyclic liquefaction potential using the cone penetration test,” Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 442-459.
48.Sasaki, Y. and Taniguchi, E.(1982), “Shaking table tests on gravel drains to prevent liquefaction of sand deposits,” Soils and Foundations, Vol. 22, No. 3, pp. 1-14.
49.Seed, H.B., and Idriss, I.M. (1971), “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 107, No. SM9, pp. 1249-1274.
50.Seed, H.B., and Martin, P.P., and Lysmer, J.(1976), “Pore-water pressure changes during soil liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT4, pp. 1249-1273.
51.Seed, H.B.(1979), “Soil liquefaction and cyclic mobility evaluation for level ground during earthquake,” ASCE, Journal of the Geotechnical Engineering Division, Vol. 105, No. GT2, pp. 201-255.
52.Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M.(1985), “The influence of SPT procedures in soil liquefaction resistance evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No.12, pp. 1425-1445.
53.Seed, H.B. and Harder, L.F.(1990), “SPT-Based analysis of cyclic pore pressure generation and undrained residual strength,” in J.M. Duncan ed., Proceedings, H. Bolton Seed Memorial Symposium, University of California, Berkeley, California, Vol. 2, pp.351-376.
54.Shibata, T., and Teparaska, W.(1988), “Evaluation of liquefaction potentials of soils using cone penetration tests,” Soils and Foundations, Vol. 28, No. 2, pp. 49-60.
55.Skempton, A.K.(1986), “Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation,” Geotechnique, Vol. 36, No. 3, pp .425-447.
56.Stark, T.D., and Olson, S.M.(1995), “Liquefaction resistance using CPT and field case histories,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 12, pp. 856-869.
57.Stokoe, K. H., Ⅱ, and Nazarian, S.(1985). “Use of rayleigh waves in liquefaction studies,” Proceedings, Measurement and Use of Shear Wave Velocity for Evaluating Dynamic Soil Properties, held in Denver, Colorado, R. D. Woods, Ed., ASCE, New York, NY, pp. 1-17.
58.Stokoe, K.H., Roesset, J.M., Bierschwale, J.G. and Aoouad, M.(1988), “Liquefaction potential of sands from shear wave velocity,” Proceedings, 9 World Conf. On Earthquake Engineering, Tokyo, Japan, Vol Ⅲ, pp.213-218.
59.Suzuki, Y., Tokimatsu, K., Koyamada, K., Taya, Y., and Kubota, Y.(1995b), “Field correlation of soil liquefaction based on CPT data,” Proceedings, International Symposium on Cone Penetration Testing, CPT’95, Linkoping, Sweden, Vol. 2, pp. 583-588.
60.Tokimatsu, K. and Yoshimi, Y. (1983), “Empirical correlation of soil liquefaction based on SPT N-value and fines content,” Soils and Foundations, Vol. 23, No. 4, pp. 56-74.
61.Tokimatsu, K. and Seed, H.B.(1987), “Evaluation of settlements in sands due to earthquake shaking,” Journal of Geotechnical Engineering Division, ASCE, Vol. 113, No. 8, pp. 861-878.
62.Tokimatsu, K., Yoshimi, Y. and Ariizumi(1990), “ Evaluation of liquefaction resistance of sand improved by deep vibratory compaction,” Soils and Foundations, Vol. 30, No. 3, pp. 153-158.
63.Tokimatsu, K. and Uchida, A.(1990), “Correlation between liquefaction resistance and shear wave velocity,” Soils and Foundations, Vol. 30, No. 2, pp. 33-42.
64.Tokimatsu, K., Kuwayama, S. and Tamura, S.(1991), “Liquefaction potential evaluation based on Rayleigh wave investigation and its comparison with field behavior,” Proceedings, 2 Int.Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, held in St. Louis, Missouri, S. Prakash, Ed., University of Missouri-Rolla, Vol. 1, pp. 357-364.
65.Vaid, Y.P., Chern, J.C. and Lee, K.L.(1985), “Liquefaction of saturated sands during cyclic loading,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 111, No. 3, pp. 1229-1235.
66.Wang, J.N. and Kavazanjian, E. Jr.(1987), “A non-stationary probabilistic model for pore pressure development and site response due to seismic excitation,” John A. Blume Earthquake Engineering Center Technical Report, No. 84, Stanford University, Stanford, California.
67.Whitman, R.V.(1984), “Evaluating calculated risk in geotechnical engineering,” Journal of Geotechnical Engineering, Vol. 110, No. 2, pp. 145-188.
68.Yegian, M.K., and Whitman, R.V.(1978), “Risk analysis for ground failure by liquefaction,” Journal of Geotechnical Engineering Division, Vol. 104, No. GT 7, pp. 921-938.
69.Youd, T.L. and Perkins, D.M.(1978), “Mapping of liquefaction - induced ground failure potential,” Journal of the Geotechnical Engineering Division, ASCE, Vol.104, No. GT4, pp. 433-446.
70.Youd, T.L., and Idriss, I.M.(1997), Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022.
71.Youd, T.L., and Idriss, I.M.(2001), “Liquefaction resistance of soils: summary report form the 1996 NCEER and 1998 NCEER/NSF workshop on evaluation of liquefaction resistance of soils,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 4, pp. 297-312.
72.Zhang, L.(1998), “Assessment of liquefaction potential using optimum seeking method,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 8, pp. 739-747.
73.丁迺忻(1998),「土壤液化潛能危害度分析簡介」,中華技術,第三十四期,第49-57頁。
74.中興工程顧問社 (1993),土壤液化潛能評估方法研究期末報告第一冊(分析評估報告),交通部高速鐵路工程籌備處研究報告。
75.中興工程顧問社 (1993),土壤液化潛能評估方法研究期末報告第二冊(現地探查暨室內試驗),交通部高速鐵路工程籌備處研究報告。
76.中華人民共和國國家標準 (1989),建築抗震設計規範GBJ11-89,中國建築工業出版社,北京。
77.內政部營建署 (1997),建築技術規則建築構造編建築耐震設計規範及解說。
78.日本建築學會 (1988),建築基礎構造設計指針。
79.日本道路協會 (1990),道路橋示方書‧同解說,V耐震設計編。
80.日本土質工學會(1978),地盤改良の調查‧設計から施工まで。
81.日本土質工學會,液化狀對策の調查‧設計から施工まで,平成5年。
82.日本道路協會 (1996),道路橋示方書‧同解說,V耐震設計編。
83.台北市、台灣省大地工程技師公會 (2000),液化區基礎修復補強工法對策說明書。
84.交通部 (1995),公路橋梁耐震設計規範,幼獅出版社。
85.行政院國家科學委員會 (2000a),彰化地區土壤液化評估與處理對策研擬(初期報告),亞新工程顧問股份有限公司執行。
86.行政院國家科學委員會 (2000b),南投、霧峰地區土壤液化調查研究。
87.吳俊逸(2000),「土壤液化引致地盤永久位移之研究」,碩士論文,國立中央大學土木工程學系。
88.亞新工程顧問股份有限公司 (2000),土壤液化評估與處理對策研擬,第一期計畫(彰化縣員林鎮、大村鄉及社頭鄉)。
89.林呈、孫洪福(2000),見證921集集大地震,美商麥格羅.希爾國際股份有限公司。
90.林昭鵑(1998),「砂土液化機率分析法之研究」,碩士論文,國立台灣大學土木工程學系。
91.金永斌、張睦雄(1985),「砂質土壤承受反覆荷重的體積應變特性」,土木水利,第十二卷,第二期,第3-16頁。
92.周鴻昇、楊清源、謝百鍾、余明山、高耀宏(2000),「南投地區地工震災調查與分析」,地工技術,第八十一期,第69-84頁。
93.洪李陵、王德昕(1995),「地震危害度分析之參數推定及簡易公式」,中國土木水利工程學刊,第七卷,第四期,第421-429頁。
94.財團法人地工技術研究發展基金會(2000),「集集大震地工災害報導」,地工技術,第77期。
95.陳俶季,「土壤液化潛能之風險評估」,地工技術,第38期,第5-16頁。
96.常大民、江克斌(1995),橋樑結構可靠性分析與設計,中國鐵道出版社,北京。
97.國家地震工程研究中心 (2000),921集集大地震大地工程震災調查報告。
98.曾豊升(2002),「現地土壤之液化強度與震陷特性」,碩士論文,國立中央大學土木工程學系。
99.馮文俊(1996),應用線性回歸,五南圖書出版公司,臺北,第371-395頁。
100.黃一正(2002),「全機率土壤液化評估法之研究」,碩士論文,國立中央大學土木工程學系。
101.黃俊鴻、陳正興(1998),「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23-44頁。
102.黃俊鴻,陳正興,林昭鵑(1999),「土壤液化機率分析法之研究」,國家地震工程研究中心研究報告,NCREE-99-043號,台北。
103.黃俊鴻、楊志文、譚志豪、陳正興(2000),「集集地震土壤液化之調查與分析」,地工技術,第77期,第51-64頁。
104.黃俊鴻 (2000),「液化地盤中樁基礎之耐震設計」,地工技術,第82期,第65-78頁。
105.黃俊鴻、楊志文(2001),「以集集地震案例資料建立土壤臨界液化強度曲線」,中國土木水利工程學刊,第13卷,第二期,第339-352頁。
106.黃俊鴻、林資凱、楊志文(2003)「現地水力回填煤灰之液化強度特性」,中國土木水利工程學刊,第15卷,第二期,第315-326頁。
107.黃富國(1996),「土壤液化之危害度分析」,博士論文,國立台灣大學土木工程學研究所,臺北。
108.黃富國、陳正興(2000),「土壤液化之機率分析法」,地工技術,第82期,第43-65頁。
109.褚炳麟、張益名、陳冠閔、徐松圻、張錦銘 (2000),「921地震霧峰、太平地區液化及下陷調查分析」,地工技術,第77期,第19-28頁。
110.葉文謙、吳建閩、鍾毓東、余明山(1998),「液化風險與土壤改良評估案例」,地工技術,第67期,第43-54頁。
111.葉文謙,吳建閩,鐘毓東,余明山 (1998),「液化風險與土壤改良評估案例」,地工技術雜誌,第67期,第43至54頁。
112.葉錦勳 (2002),地震災害境況模擬方法與應用軟體整合研究,國家地震工程研究中心報告,NCREE-02-009。
113.蔡益超(1981),工程或然率,中國水利工程協會,臺北。
114.蔡益超(1986),「耐震規範地震力規定及建築物耐震能力評估」,結構耐震分析與設計講習會,講習資料II,台大地震工程研究中心,第29-51頁。
115.蔡益超、項維邦、蔡克銓、張國鎮 (1995),建築物耐震設計規範條文、解說及示範例之研訂,研究報告CSSE 84-03B。
116.蔡益超 (2002),「台灣地區建築物耐震設計規範之沿革」,建築結構暨設備耐震設計規範研討會,中興大學。
117.賴聖耀、林炳森、李豐博、謝明志(1989),「荷式錐貫入試驗與液化可靠度之相關研究」,土木水利,第十六卷,第二期,第43-60頁。
118.賴聖耀、李豐博、謝明志(1990),「利用荷式錐貫入試驗評估土壤液化機率之邏輯迴歸模式」,土木水利,第十六卷,第四期,第35-48頁。
119.賴聖耀(1990),「以標準貫入試驗值建立土壤液化潛能判別模式」,中國土木水利工程學刊,第四期,第二卷,第301-311頁。
120.賴聖耀(1991),「以最小錯誤分類法統計震災地區土壤抗液化強度與SPT調查結果之關係」,土木水利,第十八卷,第一期,第29-44頁。
121.羅俊雄等 (2002),「我國現階段設計地震力之研發」,建築結構暨設備耐震設計規範研討會,中興大學。
122.簡文郁 (1996),「設計地震力參數與結構可靠度分析」,博士論文,國立台灣大學土木工程研究所。
123.鍾毓東,謝百鍾 (1986),「簡易土壤液化分析法」,結構工程,第一卷,第三期,第37-47頁。
124.蘇吉立、李延恭 (2000),「921集集大地震後台中港北碼頭災象調查分析」,地工技術,第七十七期,第65-76頁。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2003-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明