博碩士論文 90643001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.223.114.142
姓名 曾吉暉(Chi-Huei Tseng)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 台灣北部地區Ka波段降雨衰減模式之研究
(A Study of Ka Band Rain Attenuation Model in Northern Taiwan)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ 多層非均勻介質之微波散射模擬分析
★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究★ 地面遙測影像雷達發射與接收模組之設計
★ 合成孔徑雷達之移動目標物速度估測研究★ 小波轉換於合成孔徑雷達干涉相位雜訊之研究
★ Ka波段台灣地區降雨及地面環境傳播特性研究★ 雨滴粒徑分佈應用於Ka波段降雨衰減估計之研究
★ 全偏極合成孔徑雷達非監督式目標分類與極化方位角偏移效應估算之研究★ 全偏極合成孔徑雷達於目標分類之研究
★ 影像融合技術應用於地表分類之探討★ 應用共軛梯度演算法在掃描式合成孔徑雷達目標物特徵增強處理
★ 雨滴粒徑與植被遮蔽效應對Ka波段電波衰減影響之探討★ 基因演繹法於全偏極合成孔徑雷達影像對比強化最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著無線通訊鏈路使用日益頻繁,頻譜之擁擠,世界各國均傾向採用Ka (26~40GHz)波段,不過此波段在地表或大氣通道傳播時,容易受到自然環境影響,其中又以降雨造成的信號衰減情況,對通訊系統的品質影響最為嚴重,而預估降雨所造成的信號衰減將為重要的課題。本研究將嘗試建立一個能較適用於台灣北部地區的Ka波段降雨衰減模式
許多研究文獻中指出,雨滴粒徑分佈模型(DSD)是估計降雨衰減的最重要因子之一。雨滴粒徑分佈對應於降雨量之研究在多年前即被提出,Exponential、Gamma、Weibull、Lognormal分佈都曾被用來做為雨滴粒徑分佈模型的依據,但我們發現此些模型在台灣的適用性上均較不足。因此,本文中利用位於中壢及安坑的兩部二維光學式雨滴譜儀進行長期的降雨粒徑觀測,並利用兩年(2002~2003)的資料進行統計分析。我們先將觀測資料分為不同季節及不同降雨率(R<5mm/hr, R=5~10mm/hr, R=10~20mm/hr, R=20~40mm/hr, R>40mm/hr)統計其機率分佈函數(PDF),再將其PDF與已知之統計分佈:Gamma、Lognormal及Weibull分佈做相似性比較。經過RMS的分析之後發現使用Gamma分佈做為基礎模型最適用於本地區。於是再將其所需之三個參數:平均值μ,標準差σ,單位體積內之雨滴顆粒數N0,根據Power-Law的型式對觀測進行擬合(curve fit)。結果發現:μ=0.6736R0.1947,σ=0.2364R0.2935,N0=58.992R0.274。此即為之後估算降雨衰減時之DSD模型。
根據理論,降雨造成之衰減可視為天線波束內之所有雨滴粒子的消散係數(extinction coefficient)總合。本文中利用兩種方法計算消散係數:第一,假設雨滴為球型並利用米式散射近似(Mie scattering approximation)估算。第二,利用T-Matrix方法計算。最後結果發現利用米式散射近似計算的降雨衰減估計較接近觀測衰減值,利用T-Matrix計算的降雨衰減估計則誤差較大。
為了測試本研究的降雨衰減模型,我們在中壢中央大學內架射了一組Ka波段信號量測系統,做為量測實際降雨衰減值之用。比較後發現,本文中所提出的降雨衰減模型相當符合觀測結果。為了對照,我們亦與其它兩個廣泛使用的Crane及ITU-R降雨衰減模型比較。結果發現,本文提出的模式仍然與觀測值有最好的相符結果。Crane及ITU-R模型則會較為高估衰減,表示此兩模型較不適用於本地區。
文末,我們亦對於降雨模型的年際性及季節性差異做了評估。最後並對未來的研究提出一些展望。
摘要(英) As the communication services are increasingly demanding more access for higher frequencies up to Ka-band and beyond, a model to predict the propagation through rain is required in order to estimate the link budget and the communication performance. The rain drop size distribution (DSD) is the most important parameter in the rain attenuation prediction model. In this paper, we establish the DSD model from measurements, followed by presenting a rain attenuation model using the DSD model.
A two year observation (2002-2003) of rain drop size distribution using two two-dimensional optical distrometers at different location were recorded. The DSD were measured and analyzed for different seasons under various rain rates. The variability of DSD in both space and time was clearly shown even in the not so large area of North Taiwan. It follows that a relationship between rain rate and DSD was established. By applying statistical regression, it was also found that, in most cases, the DSD follows the Gamma distribution best. By applying three parameters (μ:mean, σ:standard deviation, : drop numbers per unit volume) into the Gamma model, the DSD model can be established.
Long-term rain attenuation measurements using a Ka band (28GHz) CW system at vertical polarization were conducted in northern Taiwan. An optical rain gauge, which has resolution of 0.01mm and can collect the rain rate every 5 seconds, measured the rain rate at the same location as the Ka band CW system. The attenuation due to the rain can be estimated by calculating the extinction coefficient over all of the rain drops within the antenna beam volume. Two methods were used to estimate the extinction coefficient. First, assuming that the scattering mechanism follows the Mie scattering approximation, and the rain drops are all sphere. Second, using T-Matrix method and the oblateness of the rain drops that vary from 1.0 to 0.8. Making use of the DSD model, a semi-empirical rain attenuation model was then developed. To validate the model, we compared it with the measured data. We further compared the results to the ITU-R and Crane models, and the comparisons show that the proposed model matched very well with in-situ measurement from a two-year data set. Both the Crane model and the ITU-R model were inadequate, as expected, for a correct interpretation of the accumulated measurement data producing overestimates.
關鍵字(中) ★ Ka波段
★ 雨滴粒徑
★ 降雨衰減
關鍵字(英) ★ rain attenuation
★ drop size distribution
★ Ka band
論文目次 致謝 i
摘要 iii
Abstract v
Table of Content vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motives and objectives 3
1.3 Organization of the thesis 5
Chapter 2 Study Problem and System Setup 7
2.1 Problem Formation 7
2.2 Climate characteristic in Taiwan 8
2.3 System Setup 9
Chapter 3 Establish the Drop Size Distribution Model 27
3.1 Introduction 27
3.2 DSD Modeling 27
3.3 Model parameters fitting 29
3.4 DSD Model testing 34
Chapter 4 Estimate the Extinction Coefficient 53
4.1 Introduction 53
4.2 Estimate Q using Mie scattering approximation 54
4.3 Estimate Q using T-Matrix method 55
Chapter 5 Model Performance Analysis 59
5.1 Introduction 59
5.2 Experiment of measuring rain attenuation 59
5.3 Compare with measurement data 60
5.4 Compare with the Crane and ITU-R model 62
5.5 Temporal analysis of the attenuation model 64
5.6 Compare the specific attenuation estimated by DSD model and measurement DSD data 65
Chapter 6 Conclusion and Outlook 73
6.1 Conclusion 73
6.2 Outlook 76
References 77
參考文獻 [1]Crane, R. K., “Electromagnetic Wave Propagation through Rain”, Wiely, 1996.
[2]Ulaby, F. T., Moore, R. K., Fung, A. K., “Microwave Remote Sensing”, Addison-Wesley, 1981.
[3]Matthew, N. O. Sadiku, “Numerical Techniques in Electromagnetics”, CRC, 1992.
[4]Mishchenko, M. I., L. D. Travis, A. A. Lacis, “Scattering, Absorption, and Emission of Light by Small Particles”, Cambridge University, 2002.
[5]Laws, J. O., and D. A. Parsons, “The Relation of Raindrop-Size to Intensity,” Transactions on Amer. Geophysics Union, vol. 24, pp. 432-460, 1943.
[6]Bussey, H. E., “Microwave Attenuation Statistics Estimated from Rainfall and Water Vapor Statistics,” Proceeding of IRE, pp. 781-785, 1950.
[7]Crane, R. K., “Propagation Phenomena Affecting Satellite Communication Systems Operating in the Centimeter and Millimeter Wavelength Bands,” Proc. IEEE, vol. 59, pp. 173-188, 1971.
[8]Crane, R. K., “Prediction of Attenuation by Rain,” IEEE Transactions on Communication, pp. 1717-1733, 1980.
[9]Crane. R. K.,” A Two-Component Rain Model for the Prediction of Attenuation Statistics,“ Radio Science, vol. 17, pp. 1371-1387, 1982.
[10]Crane, R. K.,”Evaluation of Global Model and CCIR Models for Estimation of Rain Rate Statistics,” Radio Science, vol. 20, pp. 865-879, 1985.
[11]Rice, P. L., and N. R. Holmberg,”Cumulative Time Statistics of Surface-point Rainfall Rates,” IEEE Transactions on Communication, vol. 21, pp. 1131-1136, 1973.
[12]Olsen, R. L., D. V. Roger, and D. B. Hodge,”The aRb Relation in the Calculation of Rain Attenuation,” IEEE Transactions on Antennas and Propagation, vol. 26, 1978.
[13]Chen, H.-Y., and D.-P. Lin,”Prediction of Rain Attenuation for Wireless Communication,” Microwave and Optical Technology Letters, vol. 26, pp. 2111-2114, 2000.
[14]Lin, D.-P., and H.-Y. Chen,”Volume Integral Equation Solution of Extinction Cross Section by Rain drops in the Range 0.6-100GHz,” IEEE Transactions on Antennas and Propagation, vol. 49, pp. 494-499, 2001.
[15]Li, L.-W., P. S. Kooi, M. S. Leong, M. Z. Gao, and T. S. Yeo,”Microwave Attenuation by Realistically Distorted Raindrops: Part I-Theory,” IEEE Transactions on Antennas and Propagation, vol. 43, 1995.
[16]Li, L.-W., P. S. Kooi, M. S. Leong, M. Z. Gao, and T. S. Yeo,”Microwave Attenuation by Realistically Distorted Raindrops: Part II-Predictions,” IEEE Transactions on Antennas and Propagation, vol. 43, 1995.
[17]Lee, J.-H., Y.-S. Kim, J.-H. Kim, and Yong-Seok Choi,”Empirical Conversion Process of Rain Rate Distribution for Various Integration Time,” Asia-Pacific Microwave Conference 2000, pp. 1593-1597, 2000.
[18]Xu, H., Theodore S. Rappaport, Robert J. Boyle, and James H. Schaffner,”Measurements and Models for 38-GHz Point-to-Multi-point Radiowave Propagation,” IEEE Journal on Selected Areas in Communications, vol. 18, pp. 310-321, 2000.
[19]Timothy, K. I., Jin Teong Ong, and E. B. L. Choo,”Performance of Site Diversity Technique in Singapore: Preliminary Results,” IEEE Communication Letters, vol. 5, pp. 49-51, 2001.
[20]Timothy, K. I., and S. K. Sarkar,”Generalized Mathematical Model for Raindrop Size Distribution (RSD) for Application in Radiowave Propagation and Meteorological Studies,” Electronics Letter 8th, vol. 33, pp. 895-897, 1997.
[21]Timothy, K. I., S. Sharma, M. Devi, and A. K. Barbara,”Model for Estimating Rain Attenuation as Frequencies in Range 5-30GHz,” Electronics Letters 17th, vol. 31, pp. 1505-1506, 1995.
[22]Maitra, A.,”Three-parameter Raindrop Size Distribution Modeling at Tropical location,” Electronics Letters 11th, vol. 36, pp. 906-907, 2000.
[23]Yeo, T. S., P. S. Kooi, M. S. Leong, S. S. NG,”Microwave Attenuation Due to Rainfall at 21.255GHz in the Singapore Environment,” Electronics Letters 5th, vol. 26, pp. 1021-1022, 1990.
[24]Li, L.-W., T. S. Yeo, P. S. Kooi, M. S. Leong,”Comment on Raindrop Size Distribution Model,” IEEE Transactions on Antenna and Propagation, vol. 42, 1994.
[25]Yeo, T. S., P. S. Kooi, M. S. Leong,”A Two-Year Measurement of Rainfall Attenuation of CW Microwaves in Singapore,” IEEE Transactions on Antennas and Propagation, vol. 41, 1993.
[26]Ong, J.-T., and C.-N. Zhu,”Rain Rate Measurements by a Rain Gauge Network in Singapore,” Electronics Letters 30th, vol. 33, pp. 240-242, 1997.
[27]Moupfouma, F. et al.,”Modeling of the Rainfall Rate Cumulative Distribution for the Design of Satellite and Terrestrial Communication Systems,” International Journal of Satellite Communications, vol. 13, pp. 105-115, 1995.
[28]Chebil, J. and T. A. Rahman,”Development of 1 min Rain Rate Contour Maps for Microwave Applications in Malaysian Peninsula,” Electronics Letters 30th, vol. 35, pp. 1772-1774, 1999.
[29]Salonen, E. T., J. P. V. Poiarces Reptista,”A New Global Rainfall Rate Model” 10th International Conference on Antenna and Propagation, IEE Conference Publication, pp. 14-17, 1997.
[30]Islam, M. R., and A. R. Tharek,”Conparison Between Path Length Reduction Factor Models Based on Rain Attenuation Measurements in Malaysia,”
[31]Ippolito, L. J., “Radio Propagation for Space Communications Systems,” Proceeding IEEE, vol. 67, pp. 697-727, 1981.
[32]Dissanayake, A., J. Allnutt, and F. Haidara, “A Prediction Model that Combines Rain Attenuation and other Propagation Impairments along Earth Satellite Paths,” IEEE Transactions on Antennas and Propagation, vol. 45, 1997.
[33]Karimi, K., and H. Helmken,”A Study of Satellite Channel Utilization in the Presence of Rain Attenuation in Florida,” Southeastcon ’94. Creative Technology Transfer – A Global Affair. Proceeding of the IEEE, pp. 196-200, 1994.
[34]Sweeney, D. G., and C. W. Bostian,”The Dynamics of Rain-Induced Fades,” IEEE Transactions on Antennas and Propagation, vol. 40, pp. 275-278, 1992.
[35]ITU-R.P 837, International Telecommunication Union.
[36]ITU-R.P 530, International Telecommunication Union.
[37]Marshall, J. S., and W. M. K. Palmer,”The Distribution of Raindrops with Size,” J. Meteorol., vol. 5, pp. 165-166, 1948.
[38]Joss, J., J. C. Thams, and A. Waldvogel,”The Variation of Raindrop-size Distribution at Locarno,” Proceedings of International Conference on Cloud Physics, pp. 369-373, 1967.
[39]Atlas, D., and C. W. Ulbrich,”The Physical Basis for Atenuation-Rainfall Relationships and the Measurement of Rainfall Parameters by Combined Attenuation and Radar Methods,” J. Rech. Atmos., pp. 275-298, 1974.
[40]Jiang, H., M. Sano, M. Sekine,”Weibull Raindrop-size Distribution and Its Application to Rain Attenuation,” IEE Proc. Microw. Antennas Propag., vol. 144, pp. 197-200, 1997.
[41]Timothy, K. I., J. T. Ong, and E. B. L. Choo,”Raindrop Size Distribution Using Method of Moments for Terrestrial and Satellite Communication Applications in Singapore,” IEEE Trans. Antennas and Propagation, vol. 50, pp. 1420-1424, 2002.
[42]Maitra, A., C. J. Gibbins,”Modeling of Raindrop Size Distributions from Multiwavelength Rain Attenuation Measurements,”Radio Science, vol. 34, pp. 657-666, 1999.
[43]Yeo, T. S., P. S. Kooi, M. S. Leong, and L. W. Li,”Tropical Raindrop Size Distribution for the Prediction of Rain Attenuation of Microwaves in the 10-40GHz Band,” IEEE Trans. Antennas and Propagation, vol. 49, pp. 80-83, 2001
[44]Paraboni, A., G. Masini, and A. Elia, “The Effect of Precipitation on Microwave LMDS Networks—Performance Analysis Using a Physical Raincell Model,” IEEE Journal On Selected Areas in Communications, vol. 20, no. 3, pp.615-619, 2002
[45]Freeman, R. L., Radio system Design for Telecommunications, 2nd, Wiley, 1997.
[46]Chu, C. Y. and K. S. Chen, “Effects of rain fading on the efficiency of the Ka-band LMDS system in the Taiwan area,” IEEE Trans. Vehicular Technology, Vol. 54, no. 1, pp.9-19, 2005.
[47]CCIR, “Propagation data and prediction methods required for terrestrial line of sight systems,” Rep. 564-3; Rep. and Recommendations of CCIR, Int. Telecommunication Union, 1974-1986.
[48]Liebe H.J., “Modeling attenuation and phase of radio waves in air at freequencies below 1000 GHz”, Radio Sci. Vol. 16, pp. 1183-1199, 1981.
[49]Davarian, F., D. Rogers and R. Crane “Special Issue on: Ka-Band Propagtion Effects on Earth-Satellite Links,” Proceeding of the IEEE, Vol. 85, no. 6, pp. 805-1024, 1997.
[50]Green, H. E., “Propagation Impairment on Ka-band sitcom links in tropical and equatorial regions,” IEEE Trans. Antenna and Propagation, Vol. 52, pp. 31-45, 2004.
[51]Panagopoulos, A. D. and J. D. Kanellopoulos “Differential Rain Attenuation Statistics on two Converging Point-to-Point Terrestrial Links Located in a Tropical Climatic Region,” Annals of Telecommunications, Vol. 58, pp. 673-677, 2003.
[52]Pan, Q. W., Allnutt, J. E.,”12-GHz Fade Durations and Intervals in the Tropics,” IEEE Trans. Antenna and Propagation, Vol. 52, pp. 693-701, 2004.
[53]Moupfouma, F., L. Martin, “Model of Rainfall Rate Distribution for Radio System Design, ” Proc. IEEE, Vol. 132, Pt. H. No. 1, pp. 39-43, 1985.
[54]Zhang, W., N. Moayeri.,”Power-Law Parameters of Rain Specific Attenuation,” IEEE 802.16 Broadband Wireless Access Working Group, IEEE 802.16cc-99/24.
[55]Ajayi, G. O. and R. L. Olsen,”Modeling of a tropical raindrop size distribution for microwave and millimeter wave applications,” Radio Sci., Vol. 20, pp. 193-202, 1985.
[56]Chen, C. S., and Y. L. Chen,”The Rainfall Characteristics of Taiwan,” Mon. Wea. Rev., pp. 1323-1341, 1994
[57]Maitra, A.,”Rain Attenuation Modeling from Measurements of Rain Drop Size Distribution in Indian Region,” IEEE Antenna and Wireless Propagation Letters. pp. 180-181, 2004
[58]Seow, Y. L., L. W. Li, M. S. Leong, P. S. Kooi, and T. S. Yeo,”An Efficient TCS Formula for Rainfall Microwave Attenuation: T-Matrix Approach and 3-D Fitting for Oblate Spheroidal Raindrops,” IEEE Trans. Antennas and Propagation, vol. 46, pp. 1176-1181, 1998.
[59]Crane, R. K.,”A Local Model for the Prediction of Rain-Rate Statistics for Rain-Attenuation Models,” IEEE Trans. Antennas and Propagation, vol. 51, pp. 2260-2273, 2003
[60]Tseng C. H., K. S. Chen, J. C. Shi, and C. Y. Chu, “Prediction of Ka-Band Terrestrial Rain Attenuation Using 2-Year Rain Drop Size Distribution Measurements in Northern Taiwan”, Journal of Electromagnetic Waves and Applications, 2005, accepted
[61]Tseng C. H., K. S. Chen, C. Y. Chu, Y. C. Tzeng, and P. L. Lin, “Variability Analysis of Ka Band Rain Attenuation in Taiwan”, PIERS Proceeding, 2005, accepted
[62]李果穎,”K波段地面鏈路降雨衰減效應之研究,” 國立中央大學太空科學研究所碩士論文, 2001.
[63]謝光龍,”Ka波段地面鏈路降雨效應與植被遮蔽效應之研究,” 國立中央大學太空科學研究所碩士論文, 2002.
[64]鞠志遠,”Ka波段台灣地區降雨及地面環境傳播特性研究,” 國立中央大學太空科學研究所博士論文, 2003.
[65]林逸凡,”雨滴粒徑分佈應用於Ka波段降雨衰減估計之研究,” 國立中央大學碩士論文, 2004.
指導教授 陳錕山(Kun-Shan Chen) 審核日期 2005-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明