博碩士論文 91643009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.221.146.223
姓名 陳孟遠(Meng-Yuan Chen)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 波束加寬效應與可適性波束成形的應用
(Beam Broadening Effect and Application of Adaptive Beamforming)
相關論文
★ 利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係★ 利用中壢特高頻雷達對流星現象進行觀測與應用
★ 台灣北部地區大氣折射率之分析與應用★ 中華衛星一號Ka波段標識訊號大氣衰減之量測研究
★ 利用華衛一號通訊實驗酬載Ka波段標識訊號對閃爍效應之研究★ 利用中立VHF雷達對大氣及降水回波特性之研究
★ 台灣地區Ka波段大氣傳播通道之研究★ 低軌道Ka波段人造衛星標識訊號特性之研究
★ 電離層散塊E層型態二不規則體之研究★ 中華衛星一號Ka波段傳播實驗診斷分析
★ 中華衛星一號低軌道衛星 Ka 波段雨衰減實驗與模型建立★ 特高頻雷達對空中降水粒子大小與回波功 率關係之研究
★ 低軌道衛星Ka波段閃爍現象之研究★ Ka波段雨衰減之分析與研究
★ 電離層E層場列不規則體移行速度之估算研究★ 臺灣地區蒸發導管之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用剖風儀雷達觀測大氣時,所得到的頻譜會受到波束寬的影響而改變,稱之為〝波束加寬效應〞。在本論文中對此效應加以研究,包括理論式和數值模擬的比較。其中發現波束加寬效應會使得觀測到的頻譜並不是一個完全的高斯形式。此外,垂直速度會使得頻譜寬的非均向性更為明顯,而風切所引起的的非均向性也不可忽略。針對三維風場與垂直風切的影響,在本論文中推導出波束加寬效應下的頻譜寬之表示式,藉由與數值模擬的比較,發現在一般的情形下,本論文中的結果是可以應用的。
剖風儀雷達之訊號有時會受到鳥類回波的污染,針對這個問題,發展了一個新方法來量測大氣三維風場,且將訊號中來自鳥類回波的干擾加以抑制,這個方法主要是利用分立式天線(Spaced Antenna)達到可適性波束成形(Adaptive Beamforming)的效果。在此論文中,我們使用Capon技術調整波束形狀,並將其應用於美國國家大氣研究中心(National Center for Atmospheric Research)的超高頻多天線剖風儀雷達(Multiple Antenna Profiler Radar),藉由數值模擬來研究這個方法的可行性及其限制,更進一步地使用此方法來分析被鳥類回波污染之實際觀測資料,並與一些其他分析方法的結果作比較,結果顯示使用Capon技術可得到真實大氣之三維風場,而使用全相關分析(Full Correlation Analysis)及波束後設法(Post-set Beam Steering)所得到之風速皆有很大的偏差。
摘要(英) In this thesis, the beam broadening effect on Doppler spectrum is investigated with theoretical formulation and numerical simulation. It is found that the presented beam broadening spectra are not in an exact Gaussian shape. Moreover, the anisotropy of the spectral width is more significant in the presence of vertical velocity, which may cause different spectral width even using conjugate beam directions. Furthermore, the anisotropy of the spectral width can also be induced by wind shear. Considering the effects of three-dimensional wind vector and the vertical shear of horizontal wind, the analytic expressions for beam broadening spectral width are derived. The comparisons with simulation results show that the proposed formulae are applicable in general.
In addition, a novel technique is developed for profiling radars to measure atmospheric wind fields when signals are contaminated by migrating birds. It exploits the idea of adaptive beamforming to suppress the interference from birds to provide accurate three-dimensional wind measurements using a spaced antenna system. Numerical simulations based on the configuration of the UHF Multiple Antenna Profiler Radar (MAPR) of the National Center for Atmospheric Research (NCAR) are implemented to investigate the performance and the limitation of the proposed technique. The feasibility of atmospheric wind measurements is further demonstrated by using the experimental data. Wind measurements from the full correlation analysis (FCA) and post-set beam steering (PBS) are also provided for comparisons. During the period when a single bird is present in the radar beam, the proposed technique produces wind estimates that are consistent with atmospheric wind field prior to the entry of the bird, while both FCA and PBS wind estimates are biased.
關鍵字(中) ★ 風場量測
★ 剖風儀雷達
★ 可適性波束成形
★ 鳥類回波移除
★ 波束加寬效應
★ 風切
關鍵字(英) ★ Beam broadening effect
★ Wind profiling radar
★ Wind shear
★ Wind measurement
★ Adaptive Beamforming
★ Bird removal
論文目次 1 Introduction 1
1.1 History of the Development of Wind Profilers ....... 2
1.2 Motivation and Scope of Research ................... 5
2 Principle and Techniques of Wind Profiler ............ 9
2.1 Radar Range Equation ............................... 9
2.2 Echo Mechanisms ................................... 11
2.3 Doppler Beam Swinging ............................. 13
2.4 Spaced Antenna Method ............................. 14
2.5 Radar Interferometry .............................. 16
2.6 Beamforming Technique ............................. 17
2.7 Radar Imaging Techniques .......................... 19
3 A Study of the Beam Broadening Effect 23
3.1 Introduction ...................................... 23
3.2 Numerical Model ................................... 26
3.2.1 Weighting in the radar volume ................... 28
3.2.2 Radial velocity distribution .................... 32
3.2.3 Beam broadening spectrum ........................ 35
3.3 Spectral Width Broadening Due to Wind Vector ...... 38
3.4 Spectral Width Broadening Due to Wind Shear ....... 46
3.4.1 Two-dimensional beam model ...................... 46
3.4.2 Comparison and Discussion ....................... 49
3.5 Conclusion ........................................ 61
4 Mitigate Bird Contamination on Profiler 63
4.1 Introduction to the Proposed Technique ............ 63
4.2 Theory ............................................ 66
4.3 Numerical Simulation .............................. 72
4.4 Experimental Results .............................. 84
4.5 Conclusion ........................................ 92
5 Summary and Future Work 95
A Derivation of Beam Broadening Spectral Width 99
B System Phase Calibration of MAPR 103
Bibliography 107
參考文獻 [1] G. W. Adams, J. W. Brosnahan, D. C. Walden, and S. F. Nerney. Mesospheric observations using a 2.66 MHz radar as an imaging Doppler interferometer: Description and first results. J. Geophys. Res., 91:1671–1683, 1986.
[2] B. Allen and M. Ghavami. Adaptive array systems. John Wiley & Sons Inc., West Sussex, England, 2005.
[3] B. B. Balsley and K. S. Gage. The MST radar technique: Potential for middle atmosphere studies. PAGEOPH, 118:453–493, 1980.
[4] B. B. Balsley and K. S. Gage. On the use of radars for operational wind profiling. Bull. Amer. Meteor. Soc., 63:1009–1018, 1982.
[5] H. G. Booker and W. E. Gordon. A theory of radio scattering in the troposphere. Proc. of the I.R.E., 38:401–412, 1950.
[6] G. Breit and M. A. Tuve. A test for the existence of the conducting layer. Phys. Rev., 28:554–575, 1926.
[7] B. H. Briggs. The analysis of spaced sensor records by correlation techniques.In MAP Handbook, volume 13, pages 166–186. SCOSTEP Secretariat,University of Illinois, 1406 W. Green St., Urbana, IL 61801, 1984.
[8] B. H. Briggs and R. A. Vincent. Spaced-antenna analysis in the frequency domain. Radio Sci., 27:117–130, 1992.
[9] B. Bruderer. The study of bird migration by radar part 1: The technical basis. Naturwissenschaften, 84:1–8, 1997a.
[10] B. Bruderer. The study of bird migration by radar part 2: Major achievements. Naturwissenschaften, 84:45–54, 1997b.
[11] Jean-Pierre Candusso and Michel Crochet. Effect of beam broadening on the VHF Doppler mini-radar simple method for correcting wind velocity errors. J. Atmos. Sol.-Terr. Phys., 63:275–284, 2001.
[12] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57:1408–1419, 1969.
[13] D. A. Carter, K. S. Gage, W. L. Ecklund, W. M. Angevine, P. E. Johnston, A. C. Riddle, J. Wilson, and C. R. Williams. Developments in UHF lower tropospheric wind profiling at NOAA’s aeronomy laboratory. Radio Sci., 30:977–1001, 1995.
[14] J. L. Chau and B. B. Balsley. Interpretation of angle of arrival measurements in the lower atmosphere using spaced antenna radar systems. Radio Sci., 33:517–533, 1998.
[15] J. S. Chen, J. R¨ottger, and Y. H. Chu. System phase calibration of VHF spaced antenna using the echoes of aircraft and incorporating the frequency domain interferometry technique. Radio Sci., 37:1080, doi:10.1029/2002RS002604, 2002.
[16] M. Y. Chen, T. Y. Yu, Y. H. Chu, W. O. J. Brown, and S. A. Cohn. Application of Capon technique to mitigate bird contamination on a spaced antenna wind profiler. Radio Sci., 42:RS6005,doi:10.1029/2006RS003604, 2007.
[17] B. L. Cheong, M. W. Hoffman, R. D. Palmer, S. J. Frasier, and F. J. L´opez-Dekker. Pulse pair beamforming and the effects of reflectivity field variations on imaging radars. Radio Sci., 39:RS3014, doi:10.1029/2002RS002843, 2004.
[18] B. L. Cheong, M. W. Hoffman, R. D. Palmer, S. J. Frasier, and F. J. L´opez-Dekker. Phased-array design for biological clutter rejection: Simulation and experimental validation. J. Atmos. Oceanic Technol., 23:585–598, 2006.
[19] P. B. Chilson, C. W. Ulbrich, M. F. Larsen, P. Perillat, and J. E. Keener. Observations of a tropical thunderstorm using a vertically pointing, dual-frequency, collinear beam Doppler radar. J. Atmos. Oceanic Technol., 10:663–673, 1993.
[20] P. B. Chilson, T. Y. Yu, R. G. Strauch, A. Muschinski, and R. D. Palmer. Implementation of range imaging on the Platteville 915-MHz tropospheric profiler. J. Atmos. Oceanic Technol., 20:987–996, 2003.
[21] Y. H. Chu. Beam broadening effect on oblique MST radar Doppler spectrum. J. Atmos. Oceanic Technol., 19:1955–1967, 2002.
[22] Y. H. Chu. Effects of along- and cross-radar-beam winds on Doppler radar spectrum. Ann. Geophy., 23:681–692, 2005.
[23] Y. H. Chu and C. Y.Wang. Radial velocity and doppler spectral width of echoes from field-aligned irregularities localized in the sporadic E region. J. Geophys. Res., 108(A7):1282, doi:10.1029/2002JA009661, 2003.
[24] S. A. Cohn. Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of technique. J. Atmos. Oceanic Technol., 12:85–95, 1995.
[25] S. A. Cohn, W. O. J. Brown, C. L. Martin, M. S. Susedik, G. Maclean, and D. B. Parson. Clear air boundary layer spaced antenna wind measurement with the multiple antenna profiler (MAPR). Ann. Geophy., 19:845–854, 2001.
[26] S. A. Cohn, C. L. Holloway, S. P. Oncley, R. J. Doviak, and R. J. Lataitis. Validation of a UHF spaced antenna wind profiler for high-resolution boundary layer observations. Radio Sci., 32:1279–1296, 1997.
[27] R. C. Colwell and A. W. Friend. The D region of the ionosphere. Nature, 137:782, 1936.
[28] R. J. Doviak, R. J. Lataitis, and C. L. Holloway. Cross correlations and cross spectra for spaced antenna wind profilers 1: Theoretical analysis. Radio Sci., 31:157–180, 1996.
[29] R. J. Doviak and D. S. Zrni´c. Doppler Radar and Weather Observations. Academic, San Diego, Calif., 1993.
[30] W. L. Ecklund, D. A. Carter, and B. B. Balsley. Continuous measurement of upper atmospheric winds and turbulence using a VHF Doppler radar: Preliminary results. J. Atmos. Terr. Phys., 41:983–994, 1979.
[31] D. F. Farley, H. M. Ierkic, and B. G. Fejer. Radar interferometry: A new technique for studying plasma terbulence in the ionosphere. J. Geophys. Res., 86:1467–1472, 1981.
[32] J. R. Fernandez, R. D. Palmer, P. B. Chilson, I. H¨aggstr¨om, and M. T. Rietveld. Range imaging observations of PMSE using the EISCAT VHF radar: Phase calibration and first results. Ann. Geophy., 23:207–220, 2005.
[33] S. J. Franke. Pulse compression and frequency domain interferometry with a frequency-hopped MST radar. Radio Sci., 25:565–574, 1990.
[34] S. Fukao, M. Inaba, I. Kimura, P. T. May, T. Sato, T. Tsuda, and S. Kato. A systematic error in MST/ST radar wind measurement induced by a finite range volume effect, 1: Observational results. Radio Sci., 23:59–73, 1988.
[35] W. K. Hocking. On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra, I: Theory. J. Atmos. Terr. Phys., 45:89–102, 1983.
[36] W. K. Hocking. Recent advances in radar instrumentation and techniques for studies of the mesosphere, stratosphere and troposphere. Radio Sci., 32(6):2241–2270, 1997.
[37] C. L. Holloway, R. J. Doviak, S. A. Cohn, R. J. Lataitis, and J. S. Van Baelen. Cross correlations and cross spectra for spaced antenna wind profilers 2: Algorithm to estimate wind and turbulence. Radio Sci., 32:967–982, 1997.
[38] D. H. Hysell. Radar imaging of equatorial F region irregularities with maximum extropy interferometry. Radio Sci., 31:1567–1578, 1996.
[39] D. L. Hysell and R. F. Woodman. Imaging coherent backscatter radar observations of topside equatorial spread F. Radio Sci., 32:2309–2320,1997.
[40] J. R. Jordan, R. J. Lataitis, and D. A. Carter. Removing ground and intermittent clutter contamination from wind profiler signals using wavelet transforms. J. Atmos. Oceanic Technol., 14:1280–1297, 1997.
[41] R. kretzschmar, N. B. Karayiannis, and H. Richner. Removal of birdcontaminated wind profiler data based on neural networks. Pattern Recognition, 36:2699–2712, 2003.
[42] E. Kudeki and G. R. Stitt. Frequency domain interferometry: A high resolution radar technique for studies of atmospheric turbulence. Geophys. Res. Lett., 14:198–201, 1987.
[43] E. Kudeki and F. S¨ur¨uc¨u. Radar interferometric imaging of field-aligned plasma irregularities in the equatorial electrojet. Geophys. Res. Lett., 18:41–44, 1991.
[44] E. Kudeki and R. Woodman. A poststatistics steering technique for MST radar applications. Radio Sci., 25:591–594, 1990.
[45] M. F. Larsen and R. D. Palmer. A relationship between horizontal flow gradients, in-beam incidence angles, and vertical velocities. Radio Sci., 32:1269–1277, 1997.
[46] M. F. Larsen and J. R¨ottger. VHF and UHF Doppler radars as tools for synoptic research. Bull. Amer. Meteor. Soc., 63:996–1008, 1982.
[47] C. H. Liu, J. R¨ottger, G. Dester, S. J. Franke, and C. J. Pan. The oblique spaced antenna method for measuring the atmospheric wind field. J. Atmos. Oceanic Technol., 8:247–258, 1991.
[48] P. T. May, S. Fukao, T. Tsuda, T. Sato, and S. Kato. the effect of thin scattering layers on the determination of wind by Doppler radars. Radio Sci., 23:83–94, 1988.
[49] D. A. Merritt. A statistical averaging method for wind profiler Doppler spectra. J. Atmos. Oceanic Technol., 12:985–995, 1995.
[50] C. S. Morse, R. K. Goodrich, and L. B. Cornman. The NIMA method for improved moment estimation from Doppler spectra. J. Atmos. Oceanic Technol., 19:274–295, 2002.
[51] G. D. Nastrom. Doppler radar spectral width broadening due to beamwidth and wind shear. Ann. Geophy., 15:786–796, 1997.
[52] G. D. Nastrom and F. D. Eaton. Turbulence eddy dissipation rates from radar observations at 5-20 km at White Sands Missile Range, New Mexico. J. Geophys. Res., 102:19495–19505, 1997.
[53] G. D. Nastrom and T. Tsuda. Anisotropy of Doppler spectral parameters in the VHF radar observations at MU and White Sands. Ann. Geophy., 19:883–888, 2001.
[54] R. D. Palmer, P. B. Chilson, A. Muschinski, G. Schmidt, T. Y. Yu, and H. Steinhagen. SOMARE-99: Observations of tropospheric scattering layers using multiple-frequency range imaging. Radio Sci., 36:681–693, 2001.
[55] R. D. Palmer, S. Gopalam, T. Y. Tu, and S. Fukao. Coherent radar imaging using Capon’s method. Radio Sci., 32:1279–1296, 1998.
[56] R. D. Palmer, M. F. Larsen, E. L. Sheppard, S. Fukao, M. Yamamoto, T. Tsuda, and S Kato. Poststatistic steering wind estimation in the troposphere and lower stratosphere. Radio Sci., 28:261–271, 1993.
[57] R. D. Palmer, M. F. Larsen, and S. Vangal. Effects of finite beam width and wind field divergence on Doppler radar measurements: Simulations. Radio Sci., 32:1179–1191, 1997.
[58] R. D. Palmer, K. Y. Lei, S. Fukao, M. Yamamoto, and T. Nakamura. Weighted imaging Doppler interferometry. Radio Sci., 30:1787–1801,1995.
[59] R. D. Palmer, S. Vangal, M. F. Larsen, S. Fukao, T. Nakamura, and M. Yamamoto. Phase calibration of VHF spatial interferometry radars using stellar sources. Radio Sci., 31:147–156, 1996.
[60] R. D. Palmer, T. Y. Yu, and P. B. Chilson. Range imaging using frequency diversity. Radio Sci., 34:1485–1496, 1999.
[61] C. J. Pan and C. H. Liu. A model for oblique spaced antenna technique for mesosphere-stratosphere-troposphere radar and its applications. Radio Sci., 27:131–144, 1992.
[62] M. S. Pekour and R. L. Coulter. A technique for removing the effect of migrating birds in 915-MHz wind profiler data. J. Atmos. Oceanic Technol., 16:1941–1948, 1999.
[63] V. L. Peterson and B. B. Balsley. Clear air Doppler radar measurements of the vertical component of wind velocity in the troposphere and stratosphere. Geophys. Res. Lett., 6:933–936, 1979.
[64] B. D. Pollard, S. Khanna, S. J. Frasier, J. C. Wyngaard, D. W. Thomson, and R. E. Mcintosh. Local structure of the convective boundary layer from a volume-imaging radar. J. Atmos. Sci., 57:2281–2296, 2000.
[65] M. A. Richards. Fundamentals of radar signal processing. McGraw-Hill, Taipei, Taiwan, International edition, 2005.
[66] J. R¨ottger. Reflection and scattering of VHF radar signals from atmospheric refractivity structures. Radio Sci., 15:259–276, 1980.
[67] J. R¨ottger and H. M. Ierkic. Postset beam steering and interferometer applications of VHF radars to study winds, waves, and turbulence in the lower and middle atmosphere. Radio Sci., 20:1461–1480, 1985.
[68] J. R¨ottger, C. H. Liu, J. K. Chao, A. J. Chen, Y. H. Chu, , I. J. Fu, C. M. Huang, Y. W. Kiang, F. S. Kuo, C. H. Lin, and C. J. Pan. The Chung-Li VHF radar: technical layout and a summary of initial results. Radio Sci., 25:487–502, 1990a.
[69] J. R¨ottger, C. H. Liu, J. K. Chao, A. J. Chen, C. J. Pan, and I. J. Fu. Spatial interferometer measurements with the Chung-Li VHF radar. Radio Sci., 25:503–515, 1990b.
[70] T. Sato and S. Fukao. Altitude smearing due to instrumental resolution in MST radar measurements. Geophys. Res. Lett., 9:72–75, 1982.
[71] H. Sauvageot. Radar Meteorology. Artech House Inc., Boston, MA, 1992.
[72] R. G. Strauch, D. A. Merritt, K. P. Moran, K. B. Earnshaw, and D. Van De Kamp. The Colorado wind-profiling network. J. Atmos. Oceanic Technol., 1:37–49, 1984.
[73] C. R. Vaughn. Birds and insects as radar target: A review. Proc. IEEE, 73:205–227, 1985.
[74] K. Wakasugi, A. Mizutani, M. Masaru, S. Fukao, and S. Kato. A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3:623–629, 1986.
[75] T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. LeMone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz. An overview of the International H2O Project (IHOP 2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85:253–277, 2004.
[76] J. M. Wilczak, R. G. Strauch, F. M. Ralph, B. L. Weber, D. A. Merritt, J. R. Jordan, D. E.Wolfe, L. K. Lewis, D. B.Wuertz, J. E. Gaynor, S. A. McLaughlin, R. R. Rogers, A. C. Riddle, , and T. S. Dye. Contamination of wind profiler data by migrating birds: Characteristics of corrupted data and potential solutions. J. Atmos. Oceanic Technol., 12:449–467, 1995.
[77] R. F. Woodman. Inclination of the geomagnetic field measured by an incoherent scatter technique. J. Geophys. Res., 76:178–184, 1971.
[78] R. F. Woodman. Spectral moment estimation in MST radars. Radio Sci., 20:1185–1195, 1985.
[79] R. F. Woodman. Coherent radar imaging: Signal processing and statistical properties. Radio Sci., 32:2372–2391, 1997.
[80] R. F. Woodman and A. Guillen. Radar observations of winds and turbulence in the stratosphere and mesosphere. J. Atmos. Sci., 31:493–505, 1974.
[81] T. Y. Yu and W. O. J. Brown. High-resolution atmospheric profiling using combined spaced antenna and range imaging techniques. Radio Sci., 39:RS1011, doi:10.1029/2003RS002907, 2004.
[82] T. Y. Yu and R. D. Palmer. Atmospheric radar imaging using multiplereceiver and multiple-frequency techniques. Radio Sci., 36:1493–1504, 2001.
[83] T. Y. Yu, R. D. Palmer, and D. L. Hysell. A simulation study of coherent radar imaging. Radio Sci., 35:1129–1141, 2000.
[84] G. Zhang, R. J. Doviak, J. Viekanandan, W. O. J. Brown, and S. A. Cohn. Cross-correlation ratio method to estimate cross beam wind and comparison with the full correlation analysis. Radio Sci., 38(3):8052, doi:10.1029/2002RS002682, 2003.
[85] D. S. Zrni´c and A. V. Ryzhkov. Observations of insects and birds with a polarimetric radar. IEEE Trans. Geosci. Remote Sens., 36:661–668, 1998.
指導教授 朱延祥(Yen-Hsyang Chu) 審核日期 2008-6-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明