以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:42 、訪客IP:18.118.144.199
姓名 洪志賢(Chih-Hsien Hung) 查詢紙本館藏 畢業系所 太空科學研究所 論文名稱 多變數轉化偵測法(MAD)應用於多光譜影像 變遷偵測之研究
(A Study of Change Detection in Multi-spectral Imagery Using Multivariate Alteration Detection(MAD) )相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 最簡單的變遷偵測方式為影像相減法,係將前、後期影像相對應像元相減,得灰度值為-255~255的差值影像,差值影像中,灰度值接近零的像元視為無變遷,接近-255或255的像元視為變遷。本研究中由於使用多光譜影像,毎個波段都包含了資訊,為了將全部波段的資訊結合起來,會將差值影像做主軸的轉換。傳統主軸轉換是使用差值影像的共變異矩陣所進行的主成分分析(Principal Component Analysis)。本論文中使用多變數轉化偵測法(Multivariate Alteration Detection),以典型相關分析(Canonical Correlations Analysis)為基礎,於主軸轉換時,考慮了前、後期影像之間的交叉共變異矩陣。而此方法的特色在於具有線性轉換的不變性,相當於自動做了相對的輻測校正。再以轉換後影像,利用卡方統計檢定法(Chi-Square Test),判斷變遷區域,使變遷偵測的結果能更加接近實際的變遷。 摘要(英) When analyzing changes in panchromatic images takenat different points in time, it is coustomary to analyze the difference between two images. Areas with little or no change have zero or low absolute values, and areaas with large changes have large absolute values in the difference image. If our image data gave more than two channels, it is difficult to visualize changes in all channels simultaneously. To overcome this problem and to collect information on change, linear transformations of the image data can be considered. Traditionally, we make linear transformation by using principal componint analysis by the covariance matrix of difference between two images. Therefore, we magelinear transformation by applying multivarite alteration detection(MAD) by cross-matrix between two images. The property of the multivarite alteration detection transformation is the linear scale invariance. So, if we use MAD, preprocessing by linear radiometric normalization is superfluous. To detect the change areas by Chi-Square test, and the major effectiveness fo changes is relative to material, not seasonal. 關鍵字(中) ★ 典型相關分析
★ 變遷偵測
★ 主成分分析關鍵字(英) ★ change detection
★ canonical correlation analysis
★ principal component analysis論文目次 摘要i
Abstractii
目錄iii
圖目錄v
表目錄vii
第1章 緒論1
1.1 前言1
1.2 文獻回顧2
1.2.1 影像差異法(Image Differencing)3
1.2.2 影像比例法(Image Ratioing)4
1.2.3 分類後比較法(Post-classification Comparison)4
1.2.4 常態化差異植被指標差異法(NDVI Differencing)5
1.2.5 卡方檢定偵測法(Chi-Square Test)6
1.2.6 主軸轉換分析法7
1.2.7 多時期分類法8
1.3 研究目的及方法9
1.4 章節介紹10
第2章 變遷偵測之方法11
2.1 典型相關分析(Canonical Correlations Analysis)12
2.2 多變數轉化偵測法(Multivariate Alteration Detection)16
2.3 線性轉換不變性之證明19
2.4 卡方檢定變遷偵測法(Chi-Square Test)20
第3章 模擬影像測試24
3.1 多變數轉化偵測法之線性轉換不變性24
3.2 多變數轉化偵測法之抗雜訊檢定27
3.2.1 多光譜模擬影像說明28
3.2.2 模擬影像之多變數轉化偵測法成果33
3.2.3 模擬影像之變遷區域偵測成果38
第4章 多光譜影像測試48
4.1 多光譜測試影像說明48
4.2 多光譜測試影像之多變數轉化偵測法成果50
4.3 多光譜測試影像之變遷區域偵測成果52
4.4 多變數轉化偵測法之成分結構分析54
第5章 結論與展望57
5.1 結論57
5.2 展望58
參考文獻59參考文獻 [1]Stauffer, M.L. and R.L. McKinney, "Landsat Image Differencing as An Automated Land Cover Change Detection Technique," Computer Sciences Corporation, Technical Memorandum CSC/TM-78/6215 Silver Spring, MD, 1978
[2]Singh, A., "Change Detection in the Tropical Forest Environmental of Northern India using Landsat," Remote Sens. and Tropical Land Mnagement, M.J. Eden and J.T. Parry, Eds. John Wiley & Sons, London, pp.237-254, 1986
[3]Wilson, J.R., C. Blackman, and G.W. Spann, "Land use Change Detection using Landsat Data," Proceedings of the 5th Annual Remote Sensing of Earth Resources Conference, University of Tennesses, Tullama, TN, pp.79-91, 1976
[4]Rubec, C.D., and J. Thie., "Land use Monitoring with Landsat Digital Data in Southwestern Manitoba," Proceedings of the 5th Canadian Symposium on Remote Sensing, Victoria, BC, pp. 136-150, 1987
[5]Jensen, J.R., "Introduction Digital Image Processing: A Remote Sensing Perspective Second Edition," Prentice Hall., 1996
[6]Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery Numerical Recipes in C: The Art Second Edition, Cambridge University Press.
[7]Lillesand, T.M., and R.W. Keifer, "Remote Sensing and Image Iterpretation, Second Edition," John Wiley & Sons, 1979
[8]Byrne, G.F., P.F. Crapper, and K.K. Mayo, "Monitoring Land-cover Change by Principal Component Analysis of Multitemporal Landsat Data," Remote Sensing Environ., vol.10, pp.175-184, 1980
[9]Weismiller, R.A., S.J. Kristoof, D.K. Scholz, P.E. Anuta, and S.A. Momen,"Change Detection in Coastal Zone Environments,"Photogramm. Eng. and
Remote Sens., vol. 43, pp. 1533-1539, 1977
[10]Fung, T. and LeDrew, E. "Application of Principal Components Analysis to Change Detection," Photogramm. Eng. Remote Sens,. vol.53, pp.1649-1658, 1987
[11]Gong, P.,"Change Detection Using Principal Component Analysis and Fuzzy Set Theory," Can. J. Remote Sens., vol. 29, pp. 22-29,1993
[12]Cooley, W. W., and Lohnes, P. R., "Multivariate Data Analysis,”Wiley,New York, 1971
[13]Anderson, T. W., "An Introduction to Multivariate Statistical Analysis,2nd ed.," Wiley, New York, 1984
[14]Nielsen, A. A., K. Conradsen and J. J. Simpson, "Multivariate Alteration Detection (MAD)and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies," Remote Sens. Environ., vol. 64, pp. 1-19, 1998
[15]Nielsen, A.A., "Analysis of regularly and irregularly sampled spatial, multivarite and multi-temporal data," Ph.D. dissertation, IMM, Technical University of Denmark, Lyngby, 189pp.
[16]Canty, M. J., A. A. Nielsen and M. Schmidt, "Automatic Radiometric Normalization of Multitemporal Satellite Imagery," Remote Sens. Environ., vol. 91, pp. 441-451, 2004
[17]Du, Qian, "Noise Estimation for Remote Sensing Image Data Analysis," SPIE, Bellingham, WA., 2003
[18]Tzeng, Y. C., K. S. Chen, W. L. Kao and A. K. Fung, "A Dynamic Learning Neural Network for Remote Sensing Applications,”IEEE Trans. Geosci.
Remote Sensing, vol. 32, no. 5, Sept. 1994指導教授 陳錕山(Kun-Shan Chen) 審核日期 2005-7-12 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare