博碩士論文 92643005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:18.227.102.127
姓名 李鴻瑋(Hung-Wei Lee)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 先進積分方程模型於粗糙表面散射之改善研究與應用
(Improvement of AIEM scattering model for rough surface and its application)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ 多層非均勻介質之微波散射模擬分析
★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究★ 地面遙測影像雷達發射與接收模組之設計
★ 合成孔徑雷達之移動目標物速度估測研究★ 小波轉換於合成孔徑雷達干涉相位雜訊之研究
★ Ka波段台灣地區降雨及地面環境傳播特性研究★ 雨滴粒徑分佈應用於Ka波段降雨衰減估計之研究
★ 全偏極合成孔徑雷達非監督式目標分類與極化方位角偏移效應估算之研究★ 全偏極合成孔徑雷達於目標分類之研究
★ 影像融合技術應用於地表分類之探討★ 應用共軛梯度演算法在掃描式合成孔徑雷達目標物特徵增強處理
★ 台灣北部地區Ka波段降雨衰減模式之研究★ 雨滴粒徑與植被遮蔽效應對Ka波段電波衰減影響之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用積分方程模型(Integral Equation Model)於微波粗糙表面散射之研究在近十年來已經有許多的改進及突破,然而在原模型中的克希荷夫場係數(Kirchhoff field coefficient)為了推導方便而省略了部份弗?耳反射係數(Fresnel reflection coefficient)使得其演算結果無法跟傳統的克希荷夫模型吻合。因此,本研究補回了模型中原來省略的弗?耳反射係數後,經過整理及推演出的新積分方程模型,應用在高頻條件下的雙向散射演算結果與傳統克希荷夫模型比較相當一致。另一部分,有關積分方程模型改進部份是『弗?耳反射係數轉換問題』,弗?耳反射係數為局部入射角(local incident angle)及介電常數的函數,一般於地表起伏很大或很小時,局部入射角是可以由鏡射角(specular angle)或入射角(incident angle)近似。除此兩極端地表起伏之外的問題必須透過建立轉換關係式來得到適合的弗?耳反射係數;本研究依最新發表的積分方程模型導出弗?耳反射係數轉換解析式並與傳統幾何光學模型(Geometric Optics Model),小擾動模式模型(Small Perturbation Model)及實驗量測數據做驗證。
在遙測應用領域,全偏極合成孔徑雷達為目前各國家發展趨勢,許多學者於此已提出相當多的理論及分析;因此積分方程模型也可以透過轉換矩陣來合成不同的極化型態,例如:圓形及橢圓極化等。本研究將積分方程模型進一步的推演至史托克司矩陣(Stokes matrix);透過此矩陣可合成出各種不同的極化情形的能力,更能清楚說明複雜的地表散射行為。
近年來,韓國的學者透過實驗量測提出真實的地表是由相當多粗糙尺度所結合而成,地表波譜的高頻部份是非常重要的。真實土壤地表的確是比較貼近指數相關地表函數。然而指數相關地表函數本身缺少了均方根斜率(rms slope),在應用及數學理論上是無法說明的。本研究中提出了一個貼近真實地表的地表模型,稱為『類指數相關地表函數』(exponential-like surface)。此函數除了擁有均方根斜率外,更能透過自有的變數來調整地表波譜的高頻項多寡。利用此地表函數,我們也透過在不同地表參數條件下的所估算出的背向散射及放射率來說明此地表函數的優點及特性。
最後,在反演地表參數研究上,採用動態學習神經網路(DLNN)演算法來推演地表參數。並利用德國空載雷達(E-SAR)資料及不同波段的衛載雷達(ALOS & ENVISAT)比較本方法與其他方法所推估反演出的結果。
摘要(英) ABSTRACT
In this dissertation, a new expression for a completed Kirchhoff field coefficient of the Advanced Integral Equation Model (AIEM) is re-derived. The comparisons of the bistatic scattering behavior by using the improved AIEM is in excellent agreement with numerical simulation and measured data, in terms of angular, frequency and polarization dependences. Based on this model, the transition model for AIEM is also proposed to improve the simulation accuracy. Validation by comparisons of the numerical method and experimental data gave good agreement. The second objective is to extend the AIEM for a fully polarimetric back-scattering matrix, called Stokes matrix. The Stokes matrix of AIEM includes all polarization correlation terms, and can be applied for the interpretation of the dependence on geophysical surface parameters, such as roughness, correlation length, and dielectric constant. Besides, for a wide range of use, the new scattering coefficient of AIEM for a rough surface with large heights is derived for practical applications.
The other objective of this dissertation is to develop a new surface class that can represent the real ground surface: It is the non-Gaussian correlated surface, namely the exponential-like surface class, with rms slopes and an adaptive ability for including high frequency spectral surface components. The validations of this new surface class are performed with calculations of backscattering and emissivity. Comparisons with different standard correlation functions and experimental data are given in this study.
Furthermore, the Dynamic Learning Neural Network (DLNN) is applied to perform the inversion of rough surface parameters. The estimation of soil parameters from polarimetric airborne SAR data (E-SAR) and multi-frequency SAR data (ALOS and ENVISAT) by using the AIEM are investigated. Results obtained for the new AIEM method are compared with other algorithm and demonstrate improved agreement.
關鍵字(中) ★ 先進積分方程模型
★ 微波粗糙表面散射
關鍵字(英) ★ mrcrowave scattering from rough surface
★ Advanced Integral Equation Model
論文目次 TABLE OF CONTENTS
ABSTRACT……………………………………………….……………………………..iii
LIST OF FIGURES……………………………………….………………………..........iv
LIST OF TABLES……………………………………………………………………...viii
LIST OF SYMBOLS…………………………………………………………………….ix
LIST OF ABBREVIATIONS……………………………………………………………xi
CHAPTER
1 Introduction……………………………..………………………………………............1
1.1 Background………………………………………………………………………….1
1.2 Objectives and Outlay of Chapter Contents…………………………………...……2
2 The Advanced Integration Equation Model……………………………………..........5
2.1 Introduction…………………………………………………………………..……...5
2.2 Surface Tangential Fields………………………………………………………..…….6
2.3 Far-zone Scattered Field and Scattering Coefficients……………………………...10
2.4 Theoretical Analysis of Bistatic Scattering………………………………………...14
3 Extension of AIEM for Calculations of Fully Polarimetric Scattering Coefficient from Rough Surface…………..……………………………………………………...28
3.1 Motivation and Objective…………………………………………………….........29
3.2 Kennaugh (Stokes reflection) Matrix……………………………………………...29
3.3 Sensitivity of Parameter Retrieval…………………………….…….……………..37
4 An Update of Fresnel Reflection Coefficient for AIEM ……...………………….…40
4.1 The Fresnel Reflection Coefficient…………………………………..…………….40
4.2 Update of Fresnel Reflection Coefficients for the AIEM……...……………..……42
4.3 Validation by Comparison with GOM and SPM…………………..………………47
4.4 Validation by Numerical Method and Experimental Data…………………..……..64
5 A Non-Gaussian Correlated Randomly Rough Surface…………………….............70
5.1 Introduction……………………………………………………………..………….70
5.2 The Exponential-like Correlation Surface…………………………………..……..72
5.3 Analysis of Like-polarized Backscattering………….……………………………..76
5.4 Application to Measurements……………………………………………………...80
5.5 Microwave Emission from Non-Gaussian Correlated Surface……………………92
6 Applications of AIEM to Surface Parameters Retrieval…………………………..102
6.1 Review of Inversion Issues……………………………………………………….102
6.2 Inversion by DLNN Using AIEM…………………………………….……..………105
6.2.1 Retrieval procedure……………………………………………………........105
6.3 A Comparison of Model-Based and Image-Based Surface Parameter Estimation from Polarimetric SAR Image Data…………………………………..………….107
6.3.1 Geography of the Test Site…………………………………………..……...108
6.3.2 Estimation Analysis of Model-Base and Image-Based Retrieval…………..109
6.4 Inversion surface parameters from multi-frequency SAR Image Data…………..110
7 Conclusions and Outlooks……………………………………….…………………..118
APPENDIX
A. The Kirchhoff Field Coefficients………………………………………..………..121
B. The Complementary Field Coefficients………………………………….……….123
C. AIEM for Surfaces with Large Heights…………………………...………………126
BIBLIOGRAPHY………………………………………………...….………………..141
參考文獻 Biography
[1] A. J. Poggio and E. K. Miller, "Integral equation solution of three dimensional scattering problems," Computer Techniques for Electromagnetics, Pergamon, New York, Ch. 4, 1973.
[2] F. T. Ulaby, R. K. Moore and A. K. Fung, “Microwave Remote Sensing”, vol. 2, Artech House, Norwood, MA, 1982, Chapter 12.
[3] A. K. Fung, Q. Li and K. S. Chen, "Backscattering from a randomly rough dielectric surface, " IEEE Trans. G&RS vol. 30, no. 2, pp.356-369, 1992.
[4] K. S. Chen, A. K. Fung and D. E . Weissman, “A backscattering model for sea surfaces,” IEEE Trans. G&RS, vol. 30, no. 4, pp. 811-817, 1992.
[5] A. K. Fung, Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, MA, 1994.
[6] Y. A. Liou, K.S. Chen, and T.D. Wu, "Reanalysis of L-band brightness predicted by the LSP/R model for prairie grassland: Incorporation of rough surface scattering," IEEE Trans. G&RS, vol.39, no.1, pp.129-135, 2001.
[7] A. K. Fung, W. Y. Liu, K. S. Chen, and M. K. Tsay, "An improved IEM model for bistatic scattering," J. Electromagnetic Wave and Applications, vol. 16, no.5, pp. 689-702, 2002.
[8] T. D. Wu and K. S. Chen "A Reappraisal of the Validity of the IEM Model for Backscattering from Rough Surfaces," IEEE Trans. G&RS, vol.42, no.8, pp.743-753, 2004.
[9] A. K. Fung and K. S. Chen, "An update on IEM surface backscattering model," IEEE G&RS Letters, vol.1, no.2, pp.75-77, 2004.
[10] T. D. Wu, K.S. Chen, J. C. Shi, and A. K. Fung, "A transition model for the reflection coefficient in surface scattering," IEEE Trans. G&RS, vol.39, no.9, pp.2040-2050, 2001.
[11] G. F. Biftu and T. Y. Gan, “Retrieving near-surface soil moisture from Radarsat SAR data,”?Water Resources Research, vol 35, no. 5, pp. 1569-1580, 1999.
[12] G. M. Macelloni, G. Nesti, P. Pampaloni, D. Tarchi, and S. Lolli “Experimental validation of surface scattering and emission models,” IEEE Trans. G&RS, vol. 38, no. 1, pp.459-469. 2000.
[13] F. Koudogbo and P. F. Combes, “Numerical and experimental validations of IEM for bistatic scattering from natural and manmade rough surfaces,”?Progress In Electromagnetics Research, PIER 46, pp.203–244, 2004
[14] J.C. Shi, L. M. Jiang and L. X. Zhang , K. S. Chen, J. P Wigneron,, A. Chanzy, “A Parameterized Multi-Frequency-Polarization Surface Emission Model,” IEEE Trans. G&RS, vol.43, no.12, pp. 2831-2841, 2005.
[15] A. Ishimaru and J.S.Chen, “Scattering from a very rough metallic and dielectric surfaces : a theory based on the modified Kirchhoff approximation,” Wave in Random Media, vol.1, no.1, pp.21-34,1991.
[16]? F. T. Ulaby and C. Elachi, Radar Polarimetry for Geoscience Application, Norwood:Artech House,1990.
[17] Y. Oh, K. Sarabandi, F. T. Ulaby, “Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces” , IEEE Trans. G&RS, vol. 40, no.6, pp. 1348-1355, 2002.
[18] Y. Oh, K. Sarabandi, and F. T. Ulaby, “An empirical model and an inversion technique for radar scattering from bare soil surfaces,” IEEE Trans. G&RS vol. 30, no.1, pp.370-381, 1992.
[19] I. Hajnsek, E. Pottier and S. R. Cloude, “Inversion of Surface Parameters from Polarimetric SAR”, IEEE Trans. G&RS, vol. 41, no.4, pp. 727- 744,2003.
[20] J. C. Shi, J. Wang, A. Y. Hsu, P. E. O'Neill, and E. T. Engman, “Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data,” IEEE Trans. G&RS, vol. 35, no.5, pp. 1254-1266, Sept. 1992
[21] F. Mattia, T. Le Toan, J. Souyris, G. Carolis, N. Floury, F. Posa, and G. Pasquariello, “The effect of surface roughness on multifrequency polarimetric SAR data,” IEEE Trans. G&RS, vol. 35, no. 4, pp. 954- 966, July 1997.
[22] M. Zribi, O. Taconet, S. Hegarat, D. Vidal-Madjar, “Backscattering behavior and simulation comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval,” Remote Sens. Environ., vol. 59, no.4, pp. 256-266, 1997.
[23] M. W. J. Davidson. , L. T. Thuy, F. Mattia, C. Satalino, T. Manninen, M. Borgeaud, “On the characterization of agricultural soil roughness for radar remote sensing studies,” IEEE Trans. G&RS g, vol. 38, no. 2, pp. 630-640, March 2000.
[24] K. S. Chen, T. D. Wu, and J. C. Shi, “A model-based inversion of rough surface parameters from radar measurements,” Journal of Electromagnetic Waves and Applications, vol.15, no.2, pp.173-200, 2001
[25] Q. Li, J.C. Shi, and K. S. Chen “A Generalized Power Law Spectrum and its Applications to the Backscattering of Soil Surfaces Based on the Integral Equation Model,” IEEE Trans. G&RS, vol.40, no.2, pp.271-281, 2002.
[26] L. Tsang and J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics, Chapter 1, 2, John Wiley & Sons, 2001.
[27] L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, Chapter 6, John Wiley & Sons, 2001
[28] A. G. Voronovich, Wave scattering from rough surfaces, Springer-Verlag, Berlin, 1994.
[29] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1968.
[30] B. J. Choudhury, T. J. Schmugge, A. Chang, and R. W. Newton, “Effect of surface roughness on the microwave emission from soil,” J. Geophys. Res, vol.84(C9), pp.5699-5706, 1979.
[31] J. R. Wang, and B. J. Choudhury, “Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency, ” J. Geophys. Res, vol.86(C6), pp.5277-5282, 1981.
[32] J. R. Wang, P. E. O’Neill, T. J. Jackson and E. T. Engman, “ Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness,” IEEE Trans. G&RS, vol.21, no.1, pp.44-51, Jan., 1983.
[33] T. Mo, and T. J. Schmugge, “ A parameterization of the effect of surface roughness on microwave emission, ” IEEE Trans. G&RS, vol.25, no.1, pp.47-54, Jan., 1987.
[34] T. J. Jackson, D.E. LeVine, C. T. Swift, T. J. Schmugge, and F. R. Schiebe, “Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita’92, ” Remote Sens. Environ, vol.53, no.1, pp.27-37, 1995.
[35] T. J. Jackson and D.E. LeVine, “Mapping surface soil moisture using an aircraft-based passive microwave instrument: Algorithm and example,” J. Hydrol., vol.184 , no1-2, pp.85-99, 1996.
[36] T. J. Jackson, D.E. LeVine, A. Y. Hsu , A. Oldak, P. J. Starks, C. T. Swift, J. Isham, and M. Haken, “Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains hydrology experiment,” IEEE Trans. G&RS, vol.27, no.5, pp.2136-2151, 1999.
[37] E. G. Njoku and Li Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz, ” IEEE Trans. G&RS, vol.30, no.2, pp.79-93, March, 1999.
[38] U. Wegm?ller and C. Matżler, “Rough bare soil reflectivity model, ” IEEE Trans. G&RS, vol.37, no.3, pp1391-1395, May, 1999.
[39] T. Koike, E. G. Njoku, T. J. Jackson, and S. Paloscia, “Soil moisture algorithm development and validation for the ADEOS-II/AMSR, ” Proceedings IGRASS’00, pp. 1253-1255, 2000.
[40] C. Prigent, J.-P. Wigneron, W. B. Rossow, J. R. Pardo-Carrion, “Frequency and angular variations of land surface microwave emissivities: Can we estimate SSM/T and AMSU emissivities from SSM/I emissivities, ” IEEE Trans. G&RS, vol. 38, no.5, pp. 2373-2386, 2000.
[41] J.-P. Wigneron, L. Laguerre, and Y. H. Kerr, “A simple parameterization of the L-band microwave emission from rough agricultural soil, ” IEEE Trans. G&RS, vol.39, no.8, pp.1697-1707, 2001.
[42] S. Paloscia, G. Macelloni, E. Santi, and T. Koike, “A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I Satellite, ” IEEE Trans. G&RS., vol.39, no.8, pp.1655-1661, 2001.
[43] E. Njoku, T. Jackson, V. Lakshmi, T. Chan, and S. V. Nghiem, “Soil moisture retrieval from AMSR-E, ” IEEE Trans. G&RS., vol.41, no.2, 215–229, 2003.
[44] J. C. Shi, L. M. Jiang, L. X. Zhang, K. S. Chen, J. P. Wigneron, A. Chanzy, and T. Jackson, “Physically Based Estimation of Bare Surface Soil Moisture with the Passive Radiometers”, IEEE Trans. G&RS, vol.44, no.11, pp.3145-3153, 2006.
[45] T. Schmugge, “Remote Sensing of Surface Soil Moisture,” J. Applied Meterol., vol.17, no.10, pp.1549-1557, 1978.
[46] Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, J. Martinuzzi, J. Font, M. Berger, “Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission,” IEEE Trans. G&RS, vol. 39, no.8, pp. 1729 –1735, 2001.
[47] Y. H. Kerr, P. Waldteufel, .-P. Wigneron, J. Font, M. Berger, “The Soil Moisture and Ocean Salinity mission, ” IGARSS’03, vol. 1, pp. 1-3, 2003
[48] Y. H. Kerr, F. Secherre, J. Lastenet, J.-P. Wigneron, “SMOS: analysis of perturbing effects over land surfaces, ” IGARSS’03, vol. 2, pp. 908 -910, 2003.
[49] E. Njoku, M. Spencer, K. McDonald, J. Smith, P. Houser, T. Doiron, P. E. O'Neill, R. Girard, D. Entekhabi, “The HYDROS mission: requirements and system design,” IEEE Aerospace Conference, vol.2, pp.1000-1007, 2004.
[50] D. Entekhabi, E.G. Njoku, P. Houser, M. Spencer, T. Doiron, Y. Kim, J. Smith, R. Girard, S. Belair, W. Crow, T. J. Jackson, Y. H. Kerr, J. S. Kimball, R. Koster, K. C. McDonald, P. E. O'Neill, T. Pultz, S. W. Running, J. C. Shi, E. Wood, J. Vanzyl, “The hydrosphere State (hydros) Satellite mission: an Earth system pathfinder for global mapping of soil moisture and land freeze/thaw,” IEEE Trans. G&RS, vol. 42, no.10, pp. 2184 – 2195, 2004.
[51] K. S. Chen, Tzong-Dar Wu, Leung Tsang, Qin Li, J. C. Shi, A. K. Fung, 2003, Emission of Rough Surfaces Calculated by the Integral Equation Method With Comparison to Three-Dimensional Moment Method Simulations, IEEE Trans. G&RS, vol.41, no.1, pp.90-101.
[52] K. S. Chen, A. K. Fung, J. C. Shi, and H. W. Lee, “Intepretation of backscattering mechanism from non-Gaussian Correlated Randomly Rough Surfaces,” J. Electromagn. Waves and Appl., vol.20, no.1, pp.2233-2246, 2006.
[53] A. K. Fung and N. C. Kuo, “Backscattering from multi-scale and exponential correlated surfaces,” J. Electromagn. Waves Appl., vol.20, no.1, pp.3-11, 2006.
[54] P. C. Dubois, J. Vanzyl and T. Engman, ”Measuring soil moisture with imaging radars,” IEEE Trans. G&RS, vol. 33, pp. 916-926, 1992.
[55] J. C. Shi, James Wang, Anm Y. Hsu, P. E. O’Neill and E. T. Engman, “Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data,” IEEE Trans. G&RS, vol.35, no.5, pp. 1254-1266, 1997
[56] S. R. Cloude, ”Eigenvalue parameters for surface roughness studies,” Proc. SPIE Conf. Polarization : Measurement Analysis and Remote Sensing II, Denver, CO,1999.
[57] L. Tsang, Z. Chen, S. Oh, R. J. Mark II, and A. T. C. Chang, “Inversion of snow parameters from passive microwave remote sensing measurements by neural network trained with a multiple scattering model,” IEEE Trans. G&RS, vol. 30, pp. 1015-1024, no.5, 1992.
[58] D. T. Davis, Z. Chen, L. Tsang, J. N. Hwang and A. T. C. Chang, “Retrieval of snow parameters by interactive inversion of a neural network,” IEEE Trans. G&RS, vol. 31, no.4, pp. 842-851, 1993.
[59] M. S. Dawson, A. K. Fung, and M. T. Manry, “Surface parameter retrieval using fast learning neural network,” Remote Sensing Reviews, vol.7, pp. 1-18, 1993.
[60] K. S. Chen, W. L. Kao, and Y. C. Tzeng, “Retrieval of surface parameters using dynamic learning neutral network,” IEEE Trans. G&RS, vol. 16, pp. 801-809, 1995.
[61] K. S. Chen, Y. C. Tzeng and P. T. Chen, "A neural network approach to wind retrieval form ERS-1 scatterometer data," IEEE Trans. G&RS, vol. 37, no.1, pp. 247-256, 1999.
[62] Y. C. Tzeng, K. S. Chen, W. L. Kao, and A. K. Fung, ”A dynamic learning neural network for remote sensing applications,” IEEE Trans. G&RS, vol. 32, no.5, pp. 1096-1102, 1994.
[63] T. D. Wu, “A study of the electromagnetic scattering model for randomly roughly rough surface and its applications”, thesis of P.H.D., R.O.C, 1999.
[64] T. D. Wu, K.S. Chen, J. C. Shi, H. W. Lee and A. K. Fung, “A study of AIEM Model for Bistatic Scattering from Randomly Surfaces,” IEEE Trans. G&RS, vol.46, no.9, pp.2584-2598, 2008.
[65] T. D. Wu, K. S. Chen, J. C. Shi, and Q. Li, ”A Theoretical Model of Scattering and Emission from Rough Surfaces Based on Integral Equation Method,” Proc. Progress in Electromagnetics Research Symposium, Osaka, Japan, 2001.
[66] H. T. Ewe, J. T. Johnson, K. S. Chen, ”A comparison study of the surface scattering models and numerical model ,” IGARSS '01, vol.6, pp. 2692 -2694, 2001
指導教授 陳錕山(Kun-Shan Chen) 審核日期 2009-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明