博碩士論文 956203015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.146.221.204
姓名 楊承益(Cheng-Yi Yang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 分析以全球定位系統近即時估計可降水之可行性
(Estimating near real time precipitable water from GPS observations)
相關論文
★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究★ WVR、GPS及氣球探空觀測可降水量之比較
★ GPS斷層掃描估算大氣濕折射係數模式★ GPS觀測大氣閃爍之研究
★ GPS 氣象中地面氣象模式之改進★ 由GPS信號反演大氣濕折射度之數值模擬
★ 近即時GPS觀測可降水技術之研究★ 利用水氣資訊改善降水估計之研究
★ GPS掩星觀測反演與反演誤差探討★ 微波輻射計數位相關器之設計與實現
★ GPS與探空氣球資料觀測可降水量 與降雨之關係★ 利用GPS訊號估算對流層斜向水氣含量之研究
★ 利用遙測影像反演水稻田蒸發散量 之研究★ 利用MODIS影像反演嘉義地區水稻田蒸發散量之研究
★ 利用MODIS影像於水稻田蒸發散之研究★ 對流層延遲效應與全球定位系統高程定位之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣層由各種物質所組成,水是其中一種物質,其三相變化過程中的蒸發(凝結)、融化(凝固)會吸收(放出)能量,尤以大氣層中的水蒸氣蘊含大量潛熱。此亦是熱門議題:溫室效應、全球暖化的一關鍵影響份子。水氣相較於大氣層中其他的氣體,其變化相當大,並且對人類的生活帶來諸多影響,如高濕度的空氣導致不舒服感;茂盛的水氣對流風起雲湧,成雲致雨;地表植物透過蒸散將熱量轉送。
因此,若能在最快速的時效下獲得大氣中水氣含量的資訊,對於天氣狀態的研究與分析以及氣象的預報會有相當的幫助。全球衛星定位系統(Global Positioning System, GPS)之雙頻電碼/載波相位觀測量在近十年中成功地應用於測量大氣中的水氣含量,即可降水量(Precipitable Water, PW)。
在本研究中,以GPS近即時的求解可降水量有兩關鍵要點:效率與精度。效率方面是透過使用預報星曆來達成快速解算的目的;而精度則透過GPS觀測檔的結合來求取。本文利用瑞士伯恩大學(University of Bern, Switzerland)所發展之Bernese GPS Software 5.0來處理GPS觀測資料,並利用其Bernese Process Engine的自動化功能來達到自動化與近即時求解的目的。本研究所針對的地區為台灣各地之GPS測站,利用內政部之GPS測站資料,與中央氣象局的探空資料來研究與分析近即時求解可降水的可行性。
本研究的結果顯示,在效率方面最佳可達到5分鐘內求解;而在精度方面於穩定天氣可達到1.6 mm的近即時求解精度,在擾動的天氣可達到2.0 mm的精度。
摘要(英) Water vapor in the atmosphere is an influential factor of the hydrosphere cycle, which exchanges heat through phase change and is essential to precipitation. Because of its significance in altering weather, the estimation of water vapor amount and distribution in near real time is crucial to determine the precision of the weather forecasting and the understanding of regional/local climate.
There are two key points for estimating PW in near real time precisely: using ultra-rapid ephemeris provided by International GNSS Service (IGS), the other is the combination of current observations and previous observations of a certain period. In this study, the GPS data process had been done by Bernese GPS Software 5.0 which is a software developed by University of Bern, Switzerland. The GPS data used in this study are from Ministry of Interior (MOI) and IGS, and MOI sites are capable of surface meteorological measurements. The radiosonde data from Central Weather Bereau were used to develop Taiwan-specified conversion factors.
The precision of the result is 1.6 mm in general weather condition and 2.0 mm in turbulent weather condition. The general latency of near real time PW estimates is 5 minutes.
關鍵字(中) ★ 全球定位系統
★ 可降水
★ 近即時
關鍵字(英) ★ Global Positioning System
★ precipitable water
★ near real time
論文目次 摘要
Abstract
謝誌-謝謝這兩年來的一切
目錄
圖目錄
表目錄
第1章 前言
1.1 研究動機與目的
1.2 文獻回顧
第2章 簡介
2.1 全球定位系統
2.1.1 GPS概述
2.1.2 GPS衛星訊號
2.1.3 載波相位觀測方程式
2.1.4 相位的差分
2.2 大氣層
2.2.1 大氣層延遲
2.2.2 對流層延遲
2.2.3 對流層延遲模式
2.2.4 映射函數
2.2.5 求解對流層延遲
2.3 探空氣球與轉換因子
2.4 溼遲延與可降水的關係
第3章 研究方法
3.1 實驗資料介紹
3.1.1 探空氣球資料
3.1.2 GPS解算相關資料
3.1.3 地面氣象資料
3.1.4 處理工具簡介
3.2 工作流程
3.2.1 對流層遲延解算的前置工作
3.2.2 對流層遲延的解算
3.2.3 濕遲延的解算
3.2.4 探空氣球資料建立轉換因子
3.2.5 可降水的解算
3.2.6 近即時的解算策略
第4章 實驗結果與分析
4.1 逐時解算的近即時可降水
4.2 近即時可降水之即時性
4.3 近即時可降水之精準度
4.3.1 短期尺度
4.3.2 中期尺度
4.3.3 長期尺度
4.4 案例分析:MAY 16-18 (DOY 136-138),珍珠颱風
4.5 案例分析:AUG, 8-9 (DOY 220-221),寶發颱風
4.6 案例分析:MAY 19 – JUNE 5 (DOY 139-156) 台灣梅雨季
4.7 所有實驗資料分析
第5章 結論與未來展望
5.1 結論
5.1.1 效率
5.1.2 精度
5.2 未來展望
參考文獻
參考文獻 Agnew, D. C., and K. M. Larson, 2007. Finding the repeat times of the GPS constellation. GPS Solutions, 11: 71-76.
Askne, J., and H. Nordius, 1987. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 22: 376-386.
Basili, P., S. Bonafoni, V. Mattioli, P. Ciotti, and G. d'Auria, 2002. Monitoring atmospheric water vapour using GPS measurements during precipitation events. Proc. Of IEEE/IGARSS, 24-24.
Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994. GPS Meteorology - Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology, 33: 379-386.
Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992. GPS Meteorology: Remote sensing atmospheric water vapor using Global Positioning System. Journal of Geophysical Research, 97(D14): 15787-15801.
Businger, S., S. R. Chiswell, M. Bevis, J. P. Duan, R. A. Anthes, C. Rocken, R. H. Ware, M. Exner, T. van Hove, and F. S. Solheim, 1996. The promise of GPS in atmospheric monitoring. Bulletin of the American Meteorological Society, 77: 5-18.
Chen, Y.-Q., Y.-X. Liu, X.-Y. Wang, and P.-H. Li, 2007. GPS real-time estimation of precipitable water vapor-Hong Kong experiences. ACTA Geodaetica et Cartographica Sinica, 36(1): 9-12.
Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, 1985. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20: 1593-1607.
Dodson, A. H., P. J. Shardlow, L. C. M. Hubbard, G. Elgered, and P. O. J. Jarlemark, 1996. Wet tropospheric effects on precise relative GPS height determination. Journal of Geodesy, 70: 188-202.
Elgered, G., J. L. Davis, T. A. Herring, and I. I. Shapiro, 1991. Geodesy by radio interferometery: Water vapor radiometry for estimation of the wet delay. Journal of Geophysical Research, 96: 6541-6555.
Feng, S., W. Y. Ochieng, D. Walsh, and R. Ioannides, 2006. A measurement domain receiver autonomous integrity monitoring algorithm. GPS Solutions, 10: 85-96.
Gao, X.-W., R.-Z. Chen, and X.-Y. Li, 2007. A Study of neutral atmospheric effects on pseudorange positioning with non-difference models. ACTA Geodaetica et Cartographica Sinica, 36(2): 134-140.
Geiger, A., 1988. Simulating disturbances in GPS by continuous satellite distribution. Journal of Surveying Engineering, 114(4): 182-194.
Gendt, G., C. Reigber and G. Dick, 2001. Near Real-Time Water Vapor Estimation in a German GPS Network-First Results from the Ground Program of the HGF GASP Project. Phys. Chem. Earth (A), 26(6-8): 413-416.
Gutman, S. I., and S. G. Benjamin, 2001. The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solutions, 4: 16-24.
Herring, T. A., 1992. Modeling atmospheric delays in the analysis of space geodetic data, in Proceedings of Refraction of Transatmospheric signals in Geodesy, eds. J. C. De Munck and T. A. Th.Spoelstra. Netherlands Geodetic Commission Publications on Geodesy, 36: 157-164.
Kleijer, F., 2004. Troposphere Modeling and Filtering for Precise GPS Leveling. Ph.D Dissertation, Department of Aerospace Engineering, Delft University of Technology.
Liou Y.-A., Y.-T. Teng, T. van Hove, and J. C. Liljegren, 2001. Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes. Journal of Applied Meteorology, 40: 5-15.
Owen J. S., 1967. Optical refractive index of air: dependence on pressure, temperature, and composition. Appl. Opt., 6: 51-59.
Pottiaux, E., and R. Warnant, 2002. First comparisons of precipitable water vapor estimation using GPS and water vapor radiometers at the Royal Observatory of Belgium. GPS Solutions, 6: 11-17.
Rocken, C., 1993. Sensing atmospheric water vapor with the Global Positioning System. Geo. Res. Let., 20(2): 631-634.
Santerre, R., and G. Beutler, 1993. A proposed GPS method with multi-antennae and single receiver. Bulletin Geeodesique, 67(4): 210-223.
Smith, E. K., and S. Weintraub, 1953. The constants in the equations for atmospheric refractive index frequence. Proc IEEE, 41: 1035-1037.
Solheim, F. S., J. Vivekanandan, R. H. Ware, and C. Rocken, 1999. Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. Journal of Geophysical Research, 104(D8): 9663-9670.
Stoew, B., T. Nilsson, G. Elgered, and P. O. L. Jarlemark, 2007. Temporal correlations of atmospheric mapping function errors in GPS estimation. Journal of Geodesy, 81: 311-323.
Thayer, G. D., 1974. An improved equation for the radio refractive index of air. Radio Sci., 9: 803-807.
Tralli, D. M., and S. M. Lichten, 1990. Stochastic estimation of troposheric path delays in Global Positioning System geodetic measurements. Bulletin Geeodesique, 64: 127-159.
Walpersdorf, A., M.-N. Bouin, O. Bock, and E. Doerflinger, 2007. Assessment of GPS data for meteorological applications over Africa: Study of error sources and analysis of positioning accuracy. Journal of Atmospheric and Solar-Terrestrial Physics, 69: 1312-1330.
Wang, J., L. Zhang, A. Dai, T. van Hove, and J. van Baelen, 2007. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. Journal of Geophysical Research, 112: D11107
Wang, Y., L.-T. Liu, X.-G. Hao, J.-H. Xiao, H.-Z. Wang, and H.-Z. Xu, 2007. The application study of the GPS meteorology network in Wuhan region. ACTA Geodaetica et Cartographica Sinica, 36(2): 141-145.
Ware, R. H., D. W. Fulker, S. A. Stein, D. N. Anderson, S. K. Avery, R. D. Clark, K. K. Droegemeier, J. P. Kuettner, J. Bernard Minster, and S. Sorooshian, 2000. SuomiNet: A Real-Time National GPS Network for Atmospheric Research and Education. American Meteorological Society, 81(4): 677-694.
Aiub-Donwload, ftp://ftp.unibe.ch/aiub/
Bos, M.S., H.-G. Scherneck, Ocean loading correction models developed and provided by M.S. Bos and H.-G. Scherneck at the Chalmers Centre for Astrophysics and Space Science. http://www.oso.chalmers.se/~loading/index.html
Dow, J.M., R.E. Neilan, G. Gendt, 2005. The International GPS Service (IGS): Celebrating the 10th Anniversary and Looking to the Next Decade. Adv. Space Res. 36(3): 320-326.
Google Maps, http://maps.google.com/
Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins, 1997. Global Posiioning System Theory and Practice. Springer.
Hugentobler, U., R. Dach, P. Fridez, G. Beutler, H. Bock, E. Brockmann, R. Dach, P. Fridez, W. Gurtner, H. Habrich, U. Hugentobler, D. Ineichen, M. Meindl, L. Mervart, M. Rothacher, S. Schaer, T. Springer, C. Urschl, R. Weber, 2004. Bernese GPS Software Version 5.0 Draft. Printing Office of the University of Bern.
IGS 2008. http://igscb.jpl.nasa.gov/
Leick, A., 2004. GPS satellite surveying, third edition. Wiley.
Resch, G. M., 1984. Water vapor radiometry in geodetic applications. Geodetic Refraction, 53-84.
Thessin, R. N., 2005. Atmosperic Signal Delay Affecting GPS Measurements Made by Space Vehicles During Launch, Orbit and Reentry. Thesis of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology.
Wikipedia, http://www.wikipedia.org/
Windows to the Universe team, Why does the temperature of the atmosphere vary? Boulder, CO: c2000-04 University Corporation of Atmospheric Research (UCAR), c1995-1999, 2000 The Regents of the University of Michigan, September, 2000. Online. Available: http://www.windows.ucar.edu . May 19, 2008.
Wu, Joz, 2007. Lecture-note of Satellite Geodesy.
Yuki Hatanaka, 2008. Geographical Survey Institute (1 Kitasato, Tsukuba, Ibaraki, 305-0811 Japan) holds the copyright on the RNXCMP software.
中央氣象局-防災颱風資料庫,2008。http://rdc28.cwb.gov.tw/
中央氣象局-侵台颱風資料庫,2008。http://photino.cwb.gov.tw/tyweb/mainpage.htm
陳正改,1998。台灣梅雨面面觀。地球科學園地 三月春季第五期
曾珮莉,2005。近即時GPS觀測可降水技術之研究。 碩士論文,國立中央大學太空科學研究所。
鄧諭敦,1999。 利用GPS估算可降水量。 碩士論文,國立中央大學太空科學研究所。
指導教授 劉說安(Yuei-An Liou) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明