博碩士論文 90622020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.14.83.223
姓名 溫怡瑛(Yi-Ying Wen)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 西藏高原北界之崑崙斷層地震破裂特性分析:結合地震、地質及衛星資料
(Rupture Characters of the Kunlun Fault: Integrated Analysis from Seismological, Geological and InSAR Data)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於印度板塊持續向北碰撞,造成西藏高原往東擠出脫逸,因而在高原形成許多大型走滑斷層。而位於西藏高原北界的崑崙斷層即為一條左側滑移運動強烈的活動斷層帶,其沿著崑崙山的南緣發展,綿延約2000公里。自1937年開始,崑崙斷層上陸續發生5個規模大於7的左移機制地震,且在地理位置上互補展開,暗示崑崙斷層上的5個大地震彼此之間的關係與區域構造運動的相連性。因此本文主旨在結合所有可獲得之資料,包括地震波記錄、地質資料、衛星資料等,深入分析崑崙斷層上最近期的兩個大地震--1997年瑪尼地震與2001年崑崙地震之破裂特性,以及速度變化與破裂特徵、斷層構造幾何等的相關性,並進一步探討崑崙斷層上地震間之應力轉移與區域構造間的關聯。
針對2001年崑崙地震,野外地質資料不僅提供建立斷層模型的精確資訊,亦輔助遠震波形記錄進行聯合逆推求得良好斷層滑移分布模型;爾後經由順推模擬區域表面波檢驗破裂速度變化之分析結果發現,在400公里長的破裂過程中確實有超剪切破裂速度發生,但並不需要超過P波速度。而在最大破裂速度~6.0 km/s的S-3及S-4區段分別觀察到2公里寬的滑移分隔現象與最大可達8公里寬的破裂帶等與高速破裂相關的斷層特徵,暗示速度變化與斷層破裂能量的關連性。另一方面,1997年瑪尼地震傾角近乎垂直且雙向破裂的特性,使解析度有限的地震波資料難以判斷最佳斷層模型,而高解析度且包含斷層周圍廣泛區域之衛星影像資料的加入,則輔助了分辨不同斷層滑移模型造成的地表變形差異,決定其斷層模型為西段向北傾、東段向南傾,此一致於2001年崑崙地震的破裂斷層皆向南傾。兩個地震大部分的滑移分布都集中在深度0~10公里的淺部,其斷層破裂特徵也展現與斷層介面強度及斷層幾何之間的關聯性。而兩者明顯的左側滑移機制符合西藏高原向東擠出脫逸現象;除此之外,計算5個歷史大地震的庫倫應力變化結果指出,每個地震都發生在之前已破裂地震造成的應力上升區;而檢視地震序列的時空關係後亦發現,地震沿著崑崙斷層從左往右循環發生,這些都顯示西藏高原區域構造活動主導了在崑崙斷層上發生的地震行為模式。
摘要(英) The roughly east-west sinistral strike-slip Kunlun fault, one of the faults that accommodates the eastward extrusion of Tibet plateau, is an example of large scale slip partitioning in the continental crust. Since 1937, five large (M>7) earthquakes have occurred along different segments of the Kunlun fault, and all show distinct left-lateral strike-slip motion. In this study, we utilize most of the available data, including seismological, geological and InSAR data, to analyze the rupture properties of the two recent large earthquakes on the Kunlun fault—the 1997 Manyi earthquake and the 2001 Kunlun earthquake. Then, we will discuss the stress transfer on the Kunlun fault and the relationship between the fault and the regional tectonics. The comprehensive studies by using seismological, geological and InSAR data allow us to have a complete investigation on fault geometry and rupture characters.
We first determine the nearly 400 km long finite-fault slip distribution of the 2001 Kunlun earthquake by inverting the teleseismic waveforms and using geological field observation as additional constraints. The geological field observations provide well-determined fault geometry and constrain the amount of slip at the surface. Then, forward modeling of regional surface waves was performed to estimate the variation of the speed of rupture propagation during faulting. We find that the rupture velocity peaked at around 6.0 km/s (supershear velocity, but not exceeding P-wave velocity) in the third and fourth segments (S-3 and S-4), where the maximum offset with a broad fault zone was observed. The significant variation in rupture velocity indicates differences in the partition of the earthquake fracture energy during faulting. On the other hand, the bilateral rupture and the nearly vertical dipping make it difficult to determine the optimal fault model of the 1997 Manyi earthquake. However, the high resolution and wide coverage InSAR data helps to identify the ground deformation variations derived from the different fault slip models. The preferred fault model of the 1997 Manyi earthquake is that the west segment dipps to the north and the east segment dipps to the south. This is consistent with fault geometry of the 2001 Kunlun earthquake, which is dipping to the south for all segments. The Coulomb stress transfer of the five large earthquakes and the spatial and temporal revolution of the earthquake sequence on the fault provide not only implications on tectonic involvement of the Kunlun fault to the eastward extrusion of Tibet, but also the earthquake triggering mechanism along a mature fault system.
關鍵字(中) ★ 地震
★ 超剪切破裂速度
★ 斷層應力轉移
關鍵字(英) ★ supershear rupture velocity
★ earthquake
★ stress transfer on fault
論文目次 摘要 i
Abstract ... ii
誌謝 iii
目錄 iv
圖目 vi
表目 viii
一、緒論 01
1-1 西藏高原與崑崙斷層 01
1-2 研究動機與目的 01
1-3 本文概要 02
二、研究方法 08
2-1 泛化波線理論 08
2-2 頻率-波數積分法 14
2-3 衛星視野方向合成位移投影法 18
2-4 逆推方法 18
三、2001年Ms=8.1崑崙地震 28
3-1 簡介 28
3-2 由遠震體波逆推滑移分佈 29
3-2-1 資料與斷層幾何模型 29
3-2-2 格林函數的計算 31
3-2-3 地表破裂觀測值的輔助 32
3-3 由區域表面波檢驗破裂速度 33
3-3-1 區域速度構造 33
3-3-2 破裂速度的決定 34
3-3-3 和前人研究的比較 36
3-4 討論與結論 37
四、1997年Mw=7.6瑪尼地震 66
4-1 簡介. 66
4-2 由遠震體波逆推滑移分佈 67
4-2-1 資料來源與處理 67
4-2-2 斷層模型與逆推結果 68
4-3 逆推結果的驗證分析 69
4-3-1 區域表面波之順推模擬 69
4-3-2 合成孔徑雷達干涉影像分析 69
4-4 討論與結論 71
五、討論與結論 92
5-1 綜合討論 92
5-2 結論 94
5-3 未來展望 95
參考文獻 101
參考文獻 Akekseev, A. S. & Mikhailenkl, B. G., The solution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite difference models, J. Geophys., 48, 161-172, 1980.
Aki, K. & Richards, P.G., Quantitative Seismology, Theory and Methods, Freeman and Company, 1980.
Antolik, M., Abercrombie, R. E. & Ekstrom, G.,. The 14 November 2001 Kokoxili (Kunlun Shan), Tibet, earthquake: rupture transfer through a large extensional step-over, Bull. Seismol. Soc. Am., 94, 1173-1194, 2004
Avouac, J.-P. & Tapponnier, P., Kinematic model of active deformation in central Asia, Geophys. Res. Lett., 20, 895–898, 1993.
Ben-Menahem, A. & Singh, S.J., Multipolar elastic fields in a layered half-space, Bull. seism. Soc. Am., 58, 1519–1572, 1968.
Bernard, P. & Baumont, D., Shear Mach wave characterization for kinematic fault rupture models with constant supershear rupture velocity, Geophys. J. Int., 162, 431-447, 2005.
Bhat, H. S., Dmowska, R., Rice, J. R. & Kame, N., Dynamic slip transfer from the Denali to Totschunda Faults, Alaska: Testing theory for fault branching, Bull. Seismol. Soc. Am., 94, S202-S213, 2004.
Bhat, H. S., Dmowska, R., King, G. C. P., Klinger, Y. & Rice, J. R., Off-fault damage patterns due to supershear ruptures with application to the 2001 Mw 8.1 Kokoxili (Kunlun) Tibet earthquake,J. Geophys. Res., 112, B06301, doi:10.1029/2006JB004425, 2007.
Bouchon, M., A simple method to calculate Green’s functions for elastic layered media, Bull. Seismol. Soc. Am., 71, 959-971, 1981.
Bouchon, M. & Vallée, M., Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake, Science, 301, 824-826, 2003.
Chang, C. P., Wang, C. T., Chang, T. Y., Chen, K. S., Liang, L. S., Pathier, E. & Angelier, J., Application of SAR interferometry to a large thrust deformation: the 1999 Mw=7.6 Chichi earthquake in central Taiwan, Geophys. J. Int., 159(1), 9-16, 2004.
de Hoop, A.T., Representationtheoremsfor thedisplacementinan elasticsolid and their application to elastodynamic diraction theory: PhD Thesis,Technische Hogeschool, Delft, 1958.
England, P.C. & Houseman, G. A., Finite Strain Calculations of the Continental De-formation 2. Comparison With the India-Asia Collision Zone, J. Geophys. Res., 91, 3664-3676, 1986.
Fu, B. & Awata, Y., When the Kunlun Fault began its left-lateral strike-slip faulting: evidence from cumulative offset of basement rocks and geomorphic features, Himalayan Journal of Sciences, 2, 132, 2004.
Fu, B., Awata, Y., Du, J., Ninomiya, Y. & He, W., Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China, Tectonophysics, 407, 43-63, 2005.
Funning, G. J., Parsons, B. & Wright, T. J., Fault slip in the 1997 Manyi, Tibet earthquake from linear elastic modelling of InSAR displacements, Geophys. J. Int., 169, 988-1008, 2007.
Galvé, A., Hirn, A., Mei, J., Gallart, J., Voogd, B. de, Lépine, J.-C., Diaz, J., Youxue, W. & Hui, Q., Modes of raising northeastern Tibet probed by explosion seismology, Earth Planet. Sci. Lett., 203, 35-43, 2002.
Gantmatcher, F.R., Matrix Theory, Chelsea Publishing Company, New York, NY.
Gu, G., Li, T. & Shen, A., 1989. Catalogue of Chinese Earthquakes (1831 BC-1969 AD), Science Press, Beijing, China, 1960.
Harkrider, D. G., Surface waves in multilayered elastic media. 1. Rayleigh and Love waves from buried sources in a multilayered elastic half-space, Bull. Seism. Soc. Am., 54, 627-679, 1964.
Harkrider, D. G., Potentials and Displacements for Two Theoretical Seismic Sources, Geophys. J. R. Astr. Soc., 47, 97–133, 1976.
Hartzell, S. H. & Heaton, T. H., Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California earthquake, Bull. Seismol. Soc. Am., 73, 1553-1583, 1983.
Haskell, N. A., The dispersion of surface waves on multilayered media. Bull. Seism. Soc. Amer., 43, 17-34, 1953.
Haskell, N. A., Radiation pattern of Rayleigh waves from a fault of arbitrary dip and direction of motion in a homogeneous medium, Bull. Seismol. Soc. Am., 53, 619-642, 1963.
Haskell, N. A., Radiation pattern of surface waves from point sources in a medium, Bull. Seismol. Soc. Am., 54, 377-393, 1964.
Heaton, T. H., Generalized ray method of strong ground motion, PhD Thesis, CIT, 1978.
Helmberger, D. V., The crust-mantle transition in the Bering Sea, Bull. Seismol. Soc. Am., 58, 179-214, 1968.
Helmberger, D. V., Generalized ray theory for shear dislocations, Bull. Seismol. Soc. Am., 64, 45-64, 1974.
Helmberger, D.V., Theory and application of synthetic seismograms, in Earthquakes: Observation, Theory and Interpretation, pp. 174–222, Soc. Italiana di Fisica, Bolgna, Italy, 1983.
Helmberger, D. V. & Harkrider, D. G., Modeling earthquakes with Generalized Ray Theory, in Modern Problems in Elastic Wave Propagation, Miklowitz J. Achenbach J., Editors John Wiley and Sons, New York, 499-518, 1978.
Herrmann, R. B., SH-wave generation by dislocation source- A numerical study, Bull. Seismol. Soc. Am., 69, 1-15, 1979.
Hildebrand, F.B., Methods of Applied Mathematics 2nd ed., Prentice-Hall, Englewood Cliffs, N.J., 1965.
Hjorleifsdottir, V., Kanamori, H. & Tromp, J., Rupture velocity of the 2001 Kunlun, China, event estimated from SEM waveform modeling, Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract #S42E-0218, 2003.
Ji, C., Helmberger, D. V., Wald, D. J. & Ma, K. F., Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108, doi:10.1029/2002JB001764, 2003.
Ji, C., Wald, D. J. & Helmberger, D. V., Source description of the 1999 Hector Mine earthquake; Part I: Wavelet domain Inversion theory and resolution analysis, Bull. Seis. Soc. Am., 92, 1207-1226, 2002a.
Ji, C., Wald, D. J. & Helmberger, D. V., Source description of the 1999 Hector Mine earthquake; Part II: Complexity of slip history, Bull. Seis. Soc. Am., 92, 1192-1207, 2002b.
Jolivet, L., Faccenna, C., Goffé, B., Burov, E. & Agard, P., Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens, Am. J. Sci. 303, 353–409, 2003.
Kanamori, H. & Rivera, L., Energy Partitioning During an Earthquake, in "Earthquakes: Radiated Energy and the Physics of Faulting", Geophysical Monograph Series 170, AGU Chapman Volume, 3-13, doi:10.1029/170GM03, 2007.
Kennett, B.L.N., Reflections, rays, and reverberations, Bull. Seismol. Soc. Am., 64, 1685–1696, 1974.
Kidd, W. S. F. & Molnar, P., Quaternary and active faulting observed on the 1985 Academia Sinica-Royal Geotraverse of Tibet, Phil. Trans. R. Soc. London, A327, 337-363, 1988.
King, G., Klinger, Y., Bowman,D. & Tapponnier, P., Slip partitioned surface breaks for the 2001 Kokoxili earthquake, China (Mw 7.8), Bull. Seismol. Soc. Am., 95(2), 731-738, 2005.
Klinger, Y., Xu, X., Tapponnier, P., Van Der Woerd, J., Lasserre, C. & King, G., High-resolution satellite imagery mapping of the surface rupture and slip distribution of the Mw ~7.8, November 14, 2001 Kokoxili earthquake (Kunlun Fault, Northern Tibet, China), Bull. Seismol. Soc. Am., 95, 1970-1987, doi:10.1785/0120040233, 2005.
Klinger, Y., Michel, R. & King, G.C.P.,. Evidence for an earthquake barrier model from Mw7.8 Kokoxili (Tibet) earthquake slip-distribution, Earth Planet. Sci. Lett., 242, 354-364, 2006
Langston, C. L. & Helmberger, D. V., Aprocedure for modeling shadow dislocation source, Geophys. Journ. Roy. Astr. Soc., 42, 117-130, 1975.
Lasserre C., Peltzer, G., Klinger, Y., Van Der Woerd, J. & Tapponnier, P., Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry, J. Geophys. Res., 110, B12408, doi:10.1029/2004JB003500, 2005.
Lawson, C. L. & Hanson, R. J., Solving Least Squares Problems, Prentice Hall, Englewood Cliffs, NJ, 1974.
Li, H., Van Der Woerd, J., Tapponnier, P., Klinger, Y., Qi, X., Yang, J. & Zhu, Y., Slip rate on the Kunlun Fault at Hongshui Gou, and recurrence time of great earthquake events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake, Earth Planet. Sci. Lett., 237, 285-299, 2005.
Li, S.L., Mooney, W.D., and Fan, J.C., Crustal structure of mainland China frm Deep seismic Sounding data, Tectonophysics, 420, 239-252, 2006.
Lin, A., Fu, B., Guo, J., Zeng, Q., Dang, G., He, W. & Zhao, Y., Co-Seismic strike-slip and rupture length produced by the 2001 Ms 8.1 Central Kunlun earthquake, Science, 296, 2015-2017, 2002.
Lin, A., Kikuchi, M. & Fu, B., Rupture segmentation and process of the 2001 Mw 7.8 Central Kunlun, China, Earthquake, Bull. Seismol. Soc. Am., 93, 2477-2492, 2003.
Meyer, B., Tapponnier, P., Bourjot, L., Métivier, F., Gaudemer, Y., Peltzer, G., Guo, S. & Chen, Z., Mechanisms of active crustal thickening in Gansu-Qinghai, and oblique, strike-slip controlled, northeastward growth of the Tibet plateau, Geophys. J. Int., 135, 1-47, 1998.
Molnar, P. & Deng, Q., Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia, J. Geophys. Res., 89, 6203-6227, 1984.
Molnar, P., & Lyon-Caen, H., Fault plane solutions of Earthquakes and active tectonics of the Tibetan Plateau and its margins, Geophys. J. Int., 99, 123-153, 1989.
Molnar, P. & Tapponnier, P., Active tectonics of Tibet, J. Geophys. Res., 83, 5361–5375, 1978.
Mori, J. & Hartzell, S., Source inversion of the 1988 Upland, California, earthquake: determination of a fault plane for a small event, Bull. Seismol. Soc. Am., 80, 507-518, 1990.
Ni, J. & York, J.E., Late Cenozoic extensional tectonics of the Tibetan Plateau, J. Geophys. Res., 83, 5377–5387, 1978.
Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seism Soc. Am., 75, 1135-1154, 1985.
Olson, A. H. & Aspel, R. J., Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake, Bull. Seismol. Soc. Am.,72, 1969-2001, 1982.
Ozacar, A. A. & Beck, S. L., The 2002 Denali Fault and 2001 Kunlun Fault earthquakes: complex rupture processes of two large strike-slip events, Bull. Seismol. Soc. Am., 94, S278-S292, 2004.
Peltzer, G., Crampé, F. & King, G., Evidence of nonlinear elasticity of the crust from Mw7.6 Manyi (Tibet) earthquake, Science, 286, 273-276, 1999.
Peltzer, G. & Saucier, F., Present-day kinematics of Asia derived from geologic fault rates. J. Geophys. Res., 101, 27943–27956, 1996.
Randall, G. E., Ammon, C. J. & Owens, T. J., Moment tensor estimation using regional seismograms from a Tibetan Plateau portable network deployment, Geophys. Res. Lett., 22, 1665 -1668, 1995.
Robinson, D. P., Brough, C. & Das, S., The Mw 7.8, 2001 Kunlunshan earthquake: Extreme rupture speed variability and effect of fault geometry, J. Geophys. Res., 111, B08303, doi:10.1029/2005JB004137, 2006.
Rosakis, A. J., Intersonic Shear Cracks and Fault Ruptures, Advances in Physics, 51, 1189-1257, 2002.
Rousseau, C.-E. & Rosakis, A. J., On the influence of fault bends on the growth of sub-Rayleigh and intersonic dynamic shear ruptures, J. Geophys. Res., 108, 2411, doi:10.1029/2002JB002310, 2003.
Sato, R., Crustal deformation due to dislocation in a multi-layered medium, J. Phys. Earth, 19, 32–46, 1971.
Singh, S.J., Static deformation of a multilayered half-space by internal sources, J. geophys. Res., 75, 3257–3263, 1970.
Smith, G. P. & Ekström, G., Interpretation of earthquake epicenter and CMT centroid locations, in terms of rupture length and direction, Phys. Earth and Plan. Inter., 102, 123-132, 1997.
Spencer, T. W., The method of generalized reflection and transmission coefficients, Geophysics, 25, 625-641, 1960.
Stein, R. S., Barka, A. A. & Dieterich, J. H., Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, Geophys. J. Int., 128, 594-604, 1997.
Steketee, J.A., Volterra’s dislocations in a semi-infinite elastic medium, Can. J. Phys., 36, 192–205, 1958.
Takeo, M. & Kanamori, H., Simulation of long-period ground motions for the 1923 Kanto earthquake (M = 8), Bull. Earthquake Res. Inst. Tokyo Univ., 67, 389–436, 1992.
Takeuchi, H. & Saito, M., Seismic surface waves, in Methods in Computational Physics, Vol. 11, pp. 217–295, ed. Bolt, B.A., Academic Press, New York, 1972.
Tapponnier, P. & Molnar, P., Active faulting and tectonics in China, J. Geophys. Res., 82 (20), 2905-2930, 1977.
Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R. & Cobbold, P., Propagating extrusion tectonics in Asia: New insights from simpleexperiments with plasticine, Geology, 10, 611-616, 1982.
Tapponnier, P., Peltzer, G. & Armijo, R., On the mechanics of the collision between India and Asia. In: Coward, M.P. and Ries, A.C. Editors, 1986. Collision TectonicsGeological Society of London Special Publication 19, 115–157, 1986.
Tapponnier, P., Peltzer, G. & Armijo, R., On the mechanics of the collision between India Asia, in Collision Tectonics, edited by M. P. Coward and A. C. Ries, Geol. Soc. Spec. Publ., 19, 115-157, 1986.
Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Yang, J., Oblique stepwise rise and growth of the Tibet plateau, Science, 294, 1671-1677, 2001.
Thomson, W. T., Transmission of elastic waves through a stratified solid medium, J. Appl. Phys., 21, 89-93, 1950.
Tocheport, A., Rivera, L. & Van Der Woerd, J., A study of the November 2001 Kokoxili Earthquake: History and geometry of the rupture from teleseismic data and field observations, Bull. Seis. Soc. Am., 96, 1729-174, 2006.
Turnbull, H.W.& Aitken, A.C., An introduction to the theory of canonical matrices, Blackie and Son, Ltd., London and Glasgow, 1952.
Vallée, M., Landès, M., Shapiro, N. M. & Klinger, Y., The 14 November 2001 Kokoxili (Tibet) earthquake: High-frequency seismic radiation originating from the transitions between sub-Rayleigh and supershear rupture velocity regimes, J. Geophys. Res., 113, B07305, doi:10.1029/2007JB005520, 2008.
Van Der Woerd, J., Ryerson, F. J., Tapponnier, P., Gaudemer, Y., Finkel, R. C., Mériaux, A. S., Caffee, M. W., Zhao, G. & He, Q., Holocence left slip-rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun Fault (Qinghai, China), Geology, 26, 695-698, 1998.
Van Der Woerd, J., Mériaux, A. S., Klinger, Y., Ryerson, F. J., Gaudemer, Y. & Tapponnier, P., The 14 November 2001, Mw=7.8 Kokoxili Earthquake in Northern Tibet (Qinghai Province, China), Seismol. Res. Lett., 73, 125-135, 2002a.
Van Der Woerd, J., Tapponnier, P., Ryerson, F.J., Mériaux, A.S., Meyer, B., Gaudemer, Y., Finkel, R., Caffee, M., Zhao G. & Xu Z., Uniform Post-Glacial slip-rate along the central 600 Km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology, Geophys. J. Int., 148, 356-388, 2002b.
Velasco, A. A., Ammon, C. J. & Beck, S. L., Broadband source modeling of the November 8, 1997, Tibet (Mw=7.5) earthquake and its tectonic implications, J. Geophys. Res., 105(B12), 28065-28080, 2000.
Vergne, J., Wittlinger, G., Hui, Q., Tapponnier, P., Poupinet, G., Mei, J., Herquel, G. & Paul, A., Seismic evidence for stepwise thickening of the crust across the NE Tibetan Plateau, Earth Planet. Sci. Lett., 203, 25–33, 2002.
Wan, Y.-G., Shen, Z.-K., Zeng, Y.-H. & Sheng, S.-H., Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang (Ti-betan) Plateau and its effect on large earthquake occurrence, Acta Seismologica Sinica, 20(2), 117-132, 2007.
Wang, C. Y. & Hermann, R. B., A numerical study of P-, SV- and SH-wave generation in a plane layered medium, Bull. Seismol. Soc. Am., 70, 1015-1036, 1980.
Wang, H., Xu, C. & Ge, L., Coseismic deformation and slip distribution of the 1997 Mw7.5 Manyi, Tibet, earthquake from InSAR measurements, J. of Geodynamics, 44, 200-212, 2007.
Wang, Q., Zhang, P.-Z., Freymueller, J.T., Bilham, R., Larson, K.M., Lai, X., You, X., Niu, Z., Wu, J., Li, Y., Liu, J., Yang, Z. & Chen, Q., Present-day crustal deformation in China constrained by Global Positioning System measurements, Science, 294, 574-577, 2001.
Wittlinger, G., Vergne, J., Tapponnier, P., Farra, V., Poupinet, G., Jiang, M., Su, H., Herquel, G. & Paul, A., Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet, Earth Planet. Sci. Lett., 221, 117-130, 2004.
Xia, K. W., Rosakis, A. J. & Kanamori, H., Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition, Science, 303, 1859-1861, 2004.
Xu, X., Chen, W., Ma, W., Yu, G. & Chen, G., Surface Rupture of the Kunlunshan Earthquake (Ms 8.1), Northern Tibetan Plateau, China, Seismol. Res. Lett., 73, 884-892, 2002.
Xu, X., Yu, G., Klinger, Y., Tapponnier, P. & Van Der Woerd, J., Reevaluation of surface ruion of the 2001 Kunlunshan earthquake (M w 7.8), northern Tibetan Plateau, China, J. Geophys. Res., 111, B05316, doi:10.1029/2004JB003488, 2006.
Xu, Z.-H., Wang, S.-Y. & Gao, A-J., Present-day tectonic movement in the northeastern margin of the Qinghai-Xizang (Tibetan) plateau as revealed by earthquake activity, Acta Seismolog0ca Sinica, 13, 507-515, 2000.
Yeats, R.S., Sieh, K. & Allen, C.R., The Geology of Earthquakes, Oxford Univ. Press, New York, 568 pp, 1997.
Zhu, L. & Rivera, L. A., A note on the dynamic and static displacements from a point source in multi-layered media, Geophys. J. Int., 148, 619-627, 2002.
Zhao, L., Helmberger, D. V. & Harkrider, D. G., Shear-velocity structure of the crust and upper mantle beneath the Tibetan Plateau and southeastern China, Geophys. J. Int., 105, 713-730, 1991.
Zhao, J.M., Mooney, W.D., Zhang, X.K., Li Z.C., Jin, Z.J. & Okaya, N., Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications, Earth Planet. Sci. Lett., 241, 804-814, 2005.
許力生、陳運泰,1997年中國西藏瑪尼Ms 7.9地震的時空破裂過程,地震學報,第21卷,第5期,449-459,1999.
沈正康、萬永革、甘衛軍、曾耀華、任群,東崑崙活動斷裂帶大地震之間的黏彈性應力觸發研究,地球物理學報,第46卷,第6期,786-795,2003.
徐錫偉、宋方敏、楊曉平、汪一鵬、向宏發、于貴華、韓竹君,中國大陸地表破裂型潛在震源區的地震地質學綜合判定-藏北高原無人區瑪尼地震現場考察的啟示,震情研究,44卷,第一期,14-26,2000.
賀日政、高銳,西藏高原北向裂谷研究意義,地球物理學進展,第18卷,第一期,35-43,2003.
孫建寶、徐錫偉、沈正康、石耀霖、梁芳,基於線彈性錯位模型及干涉雷達同震形變場反演1997年瑪尼Mw 7.5級地震參數-I 均勻滑動反演,地球物理學報,第50卷,第4期,1097-1110,2007.
孫建寶、徐錫偉、沈正康、石耀霖、梁芳,基於線彈性錯位模型及干涉雷達同震形變場反演1997年瑪尼Mw 7.5級地震參數-II 滑動分布反演,地球物理學報,第50卷,第5期,1390-1397,2007
劉瑞豐、陳運泰、Krueger, F.,成瑾、楊輝、韓煒、牟磊育,用遠場資料反演西藏瑪尼地震的高階地震矩張量,地震學報,第22卷,第3期,225-232,2000.
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2009-3-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明