博碩士論文 91622017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:122 、訪客IP:3.145.97.248
姓名 蔡旻倩(Min-Chien Ysai)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣西南部GPS資造時間序列分析與地殼變形模式研究
(GPS time series analysis and modeling studies of crustal deformation in southwestern Taiwan)
相關論文
★ 利用S波與尾波探求蘭陽平原局部場址效應★ 以地表位移量推算921地震時車籠埔斷層之錯動參數
★ 利用921地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究★ 1999年集集地震序列強地動峰值隨方位角變動及以偏極化分析輔助地震定位方法之研究
★ 九二一集集大地震序列各地累積絕對速度值(CAV)之研究★ 以反應譜比值法推求地震時結構物振動行為之研究
★ 紅河斷裂帶地震活動以及東南亞地殼與上部地函構造之研究★ 台灣地區地震危害度的不確定性分析與參數拆解
★ 台灣小規模地震再發統計模式參數研究★ 台灣ShakeMap震度之研究-以九二一集集地震序列為例
★ 集集地震之震前、同震及震後變形模式研究★ 斷層錯動、地殼變位及強地動與地震災害相關性之研究: 以1935年及1999年台灣中部兩次地震為例
★ 利用傅氏振幅譜比法分析全台灣強震站的場址★ 以Gamma Model對台灣餘震叢集現象之研究
★ 機率式地震誘發山崩危害度分析–以國姓地區為例★ 探討地震發震構造之辨識與分布:以集集地震序列為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球定位系統(GPS)已成為研究地殼變動及地體動力學的利器,當有較大地震發生時,GPS資料可以有效的用於震前、同震和震後變形的相關研究,配合近斷層的密集觀測結果,更可偵測活動中盲斷層位置及其變形,估算斷層滑移率,作為地震潛勢評估的重要依據。台灣西南部地區為目前正在活動的構造帶,近年來頻繁的地震活動說明此區正處於一個較為劇烈活動的時期。本研究將藉由GPS時間序列分析修正1993年~2002年嘉南地區的GPS速度場,根據該區的地質、地震和震測資料做模型假設,利用彈性半無限空間模型,推求台灣西南部地區可能的斷層幾何形貌和滑移速率,以期對此區的活動構造能有更進一步的瞭解。
疊加本研究中連續測站資料之功率譜結果顯示,GPS時間序列中的雜訊為「全頻等幅雜波+閃變雜波」的模式,所以本研究中使用此模式進行GPS時間序列分析。長週期的觀測資料之模型參數可能有下列幾項:線性速率、年週期及半年週期的變化量、因地震或更換天線所導致的不連續、地震後線性速率的變化及指數衰減的現象。利用最大可能估計法(MLE)代入模型中,重複疊代估計各參數直到殘差值在時間域中呈隨機分佈,表示修正完全。重新評估模型參數的結果顯示,誤差放大為三~四倍,東西、南北及垂直方向殘差之平均RMS值分別為3.2 mm、2.2 mm、9.7 mm,此值也反應了觀測之精度。而後利用時間序列分析所建立的方法,修正嘉南地區速度場從事進一步研究。水平地殼運動速度場顯示,以九芎坑-木屐寮-六甲斷層的線型位置為分界,由東到西有明顯速度變小的趨勢,在嘉南沿海一帶,其相對於澎湖白沙島的速度幾乎為零。左鎮斷層以南,速度場開始有向南偏轉並且明顯變大的現象;到高雄-屏東一帶速度已達到50 mm/yr以上,速度場的變化顯示了台灣西南部地區的構造的複雜性。
根據修正後的GPS速度場,假設兩種斷層模型進行逆推。第一種模型假設地下某深度存在一滑脫面,第二種模型沿滑脫面向上延伸另一個斷層至地表C利用網格搜尋及Bootstrap方法所得結果顯示,滑脫面上延伸出去的斷層出露位置約在九芎坑-木屐寮-六甲斷層的線型位置,但結果顯示此斷層面的滑移量很小,沒有太大的貢獻;表示單一斷層模型即可符合地表觀測結果。當滑脫面頂部位於觸口斷層下方時,滑脫面上平均滑移速率為44.6 mm/yr,最佳深度為5 km,且斷層位置和深度兩參數間相關性高,隨斷層位置東移,最佳深度會逐漸加深至15 km;最佳傾角約為0°,為一水平的滑脫面。根據Hsu et al.(2003)利用1993~1999年GPS速度場,以二維彈性半無限空間錯位模型推求台灣造山帶間震期之地殼變形結果顯示,台灣南部構造可能存在近乎水平的滑脫面,約位於深度10 km處,滑脫面上的滑移速率為40 mm/yr,與本研究中的逆推結果相似。
摘要(英) Global Position System (GPS) has become an efficient tool for studying crustal deformation and geodynamics. In the event of a major earthquake, continuous GPS data are useful for researches on interseismic, coseismic and postseismic deformations. Combining with results from near-fault dense-spacing GPS surveys, we may detect locations and deformations of blind faults and estimate the fault-slip rates. These important information can be used for earthquakes potential evaluation. The southwestern Taiwan is an active tectonic area. Frequently occurred earthquakes indicate that this area now is in a period of highly seismic activities. In this study, we use GPS time series analysis to correct 1993-2002 velocity field in southwestern Taiwan. In order to understand the active tectonic structures in this area, we assume an appropriate fault model in elastic half-space based on geological, earthquake, and seismic reflection data, to invert for optimal fault geometry and slip rate.
Stacking of power spectral densities from continuous GPS data in southwestern Taiwan, we found the slopes of spectra (spectral index) are -0.61, -0.62, and -0.55, for the E, N, U components, respectively. This result and former studies indicate the continuous GPS data are best described as a combination of white noise and flicker noise. Hence we use 「white noise + flicker noise model」as noise model for GPS time series analysis in this study. The observed motion of long-period recording continuous GPS station can be described by some model parameters such as linear rate, annual periodic and semi-annual periodic motions, coseismic offsets, postseismic rate change, and exponential decay after earthquakes. The maximum likelihood estimator (MLE) is utilized to estimate the amplitudes of white and flicker noise in the postfit residuals of each time series. The full covariance matrix is the sum of the white and flicker noise covariance matrices; it can be employed to model time series data again. By iterating foregoing steps, we can obtain the cleaned time series data and final model parameters. When the postfit residuals show a random distribution, it means the corrections are essentially complete. The mean RMS values of resdiuals which represent for precision of continuous GPS observations are 3.2mm, 2.2mm, and 9.7mm in the east, north and up components, respectively. We use the results from GPS time series analysis to estimate the 1993-2002 velocity field of southwestern Taiwan. With respect to Paisha (S01R) of Penghu , the horizontal velocity field shows obviously decrease from west to the east of Jiuchiunken-Muchiliao-Liuchia fault, and even decrease to nearly zero at the Chianan coastal area. On the other hand, the velocities increase southward and their directions become southwesterly to the south of Tsochen fault. It reaches to 50 mm/yr in the Kaohsiung-Pingtung area. This implies the complexity of structures in southwestern Taiwan.
Based on the corrected velocity field, we assume two fault models in the inversion. The basis of model fault geometry is the thin-skinned theory that proposed a decollment underneath the fold-thrust belt in western Taiwan. The difference between the two models is one with a decollment only, and the other has a thrust fault extending to the surface from decollment. The results of inversion by grid search and bootstrap method indicate the surface traces of the thrust fault is near the Jiuchiunken-Muchiliao-Liuchia fault, but the slip rates on the extending fault plane are relatively small. In other words, the model without extending fault is enough to describe the GPS observations on the surface. When the surface projection for the western upper edge of decollment is very close to Chuko fault, average slip rate on decollment is 44.6 mm/yr. The optimal depth and dip are 5 km and 0°, respectively. It is a sub-horizontal decollment. However, there is a high correlation between two model parameters, position and depth. Down to 15 km, the depth of decollment becomes larger when the western edge of decollment moves further east. Hsu et al.(2003) used a GPS surface velocity field of Taiwan for the time period between 1993 and 1999 to infer interseismic slip rates on subsurface faults, their result show there exists a nearly horizontal decollment at a depth of 10 km and the slip rate on decollment is 40 mm/yr, consistent with our conclusion from this study.
關鍵字(中) ★ 時間序列分析
★ 地殼變形
關鍵字(英) ★ time series analysis
★ GPS
★ model
★ Ccrustal deformation
論文目次 摘要 i
致謝 ii
目錄 iii
圖目 vi
表目 vii
第一章 緒論 1
1.1 研究動機及目的 1
1.2 研究內容 2
1.2.1緒論 2
1.2.2 GPS系統架構及資料處理 2
1.2.3 GPS時間序列分析 3
1.2.4台灣西南部地殼變形模式研究 3
1.2.5討論及結論 3
第二章 GPS系統架構及資料處理 5
2.1 GPS衛星大地測量 5
2.2 GPS的系統架構 5
2.3 GPS的訊號架構 8
2.4 GPS之定位原理 9
2.4.1 虛擬距離觀測量 10
2.4.2 載波相位觀測量 11
2.4.3 差分法 12
2.5 GPS資料之誤差來源與因應方法 13
2.5.1 軌道誤差 13
2.5.2 測站座標誤差 14
2.5.3 衛星及接收儀時錶誤差 14
2.5.4 對流層延遲誤差 14
2.5.5 對離層延遲誤差 15
2.5.6 跳週的影響 16
2.5.7 整數週波未定值求解誤差 16
2.5.8 多路徑效應 18
2.5.9 天線相位中心偏移的影響 18
2.6 GPS資料處理 19
2.6.1 程式特色與結構 19
??2.6.2 程式執行流程 22
第三章 GPS時間序列分析 27
3.1 研究地區概況及資料取得 27
3.2 GPS時間序列雜訊分析 31
3.3分析結果 37
3.4嘉南地區之GPS速度場 50
第四章 台灣西南部地殼變形模式研究 53
4.1 前人研究 54
?4.2 研究區域地質概況 58
4.3台灣西南部地區的地殼變形模式 70
4.3.1 彈性半無限空間模型 71
4.3.2 模型參數 73
4.3.3 模型逆推結果 79
第五章 討論與結論 92
參考文獻 94
附錄 100
英文摘要 104
圖   目
圖1.1 台灣GPS連續觀測網之點位分佈圖  4
圖2.1 GPS衛星及軌道分佈圖? 7
圖2.2 GPS的系統控制部分架構圖  7
圖2.3 GPS的衛星信號結構圖  8
圖2.4 BERNESE程式執行選單  22
圖2.5 BERNESE觀測資料處理流程圖  26
圖3.1 CHNL(中崙站)的原始時間序列分佈圖  28
圖3.2 研究區域GPS測站之地理位置圖  29
圖3.3 GAIS(甲仙站)離群點時間序列分佈圖  28
圖3.4 GAIS(甲仙站)之時間序列分佈圖  33
圖3.5 全頻等幅雜波於時間序列中的行為與其功率譜特性  34
圖3.6 閃變雜波於時間序列中的行為與其功率諎特性  34
圖3.7 隨機走動雜波於時間序列中的行為與其功率諎特性  35
圖3.8 疊加台灣西南部連續測站資料所得各分量之功率譜  35
圖3.9 HOKN(後港站)修正錯誤資料點的時間序列分佈圖  39
圖3.10a HOKN(後港站)修正前後資料點的時間序列分佈圖  40
圖3.10b 後港站修正後模型殘差分佈圖  40
圖3.11a CHYN(竹園站)東西、南北及垂直分量之時間序列  41
圖3.11b CHYN測站移除年週期、半年週期變化等效應,重新回
歸測站之線性運動速率  41
圖3.11c CHYN測站東西方向分量之殘差值  41
圖3.11d 東西方向之殘差值之累積統計圖  41
圖3.12 利用線性回歸估算之同震位移量  51
圖3.13 修正後台灣西南部速度場  52
圖4.1 1996年~2000年嘉南地區地震規模小於四之地震震央
分佈圖 56
圖4.2 1996年~2000年嘉南地區地震規模大於四之地震震央
分佈圖 57
圖4.3 嘉南地區活斷層分佈圖  60
圖4.4 台灣西南部地質圖  62
圖4.5 九芎坑斷層(CCKF)、桐樹湖斷層(TSHF)、古坑斷層
(KKNF)與大尖山斷層(TCSF)區域數值地形分色成
影地形圖。  67
圖4.6 木屐寮斷層及六甲斷層附近地區之數值地形圖  68
圖4.7 六甲斷層與牛山背斜剖面示意圖  69
圖4.8 間震期的地殼變形示意圖  70
圖4.9 Okada(1985) 所定義的斷層座標系統  72
圖4.10 嘉南地區速度場投影剖面圖  77
圖4.11 單一斷層面模型與雙斷層模型的簡單幾何示意圖  78
圖4.12 斷層模型投影到地表的幾何關係位置圖  80
圖4.13 斷層傾角與斷層深度的相關性圖  80
圖4.14 利用網格搜尋斷層深度及斷層傾角的均方根值及加權均
方根值分佈圖  81
圖4.15 利用交互驗證法(Cross validation)計算β值  82
圖4.16 單一斷層模型逆推結果  83
圖4.17 單一斷層模型逆推地表速度場與實際觀測的比較圖  85
圖4.18 雙斷層面模型,改變不同傾角所得之均方根與加權均方
根值所做的比較  87
圖4.19 雙斷層面模型逆推直與實際觀測值的比較圖  88
圖4.20 單一斷層模型經過bootstrap搜尋結果  90
圖4.21 斷層位置與斷層深度相關性圖  91
圖4.22 不同斷層傾角之逆推結果  91
表??目
表2.1 最大垂直向電離層誤差 16
表2.2 BERNESE GPS軟體可接受之接收機種類 21
表2.3 BERNESE GPS軟體所使用的L1及L2信號之線性組合 21
表3.1 時間序列分析所使用的連續記錄站時段資料表 30
表3.2 各個測站之同震位移量修正時間表 42
表3.3 各測站時間序列分析後所的之最佳a、b值 43
表3.4 雜訊分析後所得各測站之平均速度值 44
表3.5 雜訊分析後所得各測站之集集地震指數衰減修正值 45
表3.6 雜訊分析後所得各測站之同震位移量修正值 46
表3.7 雜訊分析後所得各測站之集集地震後線性速率 47
表3.8 雜訊分析後所得各測站之集集地震後線性速率改變量 48
表3.9 雜訊分析後所得各測站之殘差值 49
表4.1 歷年研究大尖山(紅色線)、觸口(藍色線)、崙後斷層
(綠色線)之南北界線。 61
表4.2 搜尋最佳斷層面的分割數目表 83
參考文獻 中國石油公司台灣油礦探勘總處,十萬分之一地質圖幅No.5-嘉義,1986
中國石油公司台灣油礦探勘總處,十萬分之一地質圖幅No.6-台南,1989
石再添、鄧國雄、張瑞津、石慶得、楊貴三,臺灣活斷層的地形學研究。國立臺灣師範大學地理研究所研究報告,第12期,1-44頁,1986。
安守中,GPS全球衛星定位系統,全華科技圖書股份有限公司出版,2002
何春蓀,台灣地質概論:台灣地質圖說明書,二版二刷,經濟部中央地質調查所,第71頁,共164頁,1994
余水倍、劉啟清,台灣西南部活斷層之監測研究(II),國科會防災科技報告,第80-78號,1992
余水倍、陳宏宇、劉至忠,嘉南地區之水平變形,第四屆台灣地區地球物理研討會論文集,第603-611頁,1992
余水倍、郭隆晨、許雅儒、劉啟清、蘇宣翰,1999年集集大地震之震後變形,中國地質年會八十九年年會暨學術研討會,2-4頁,2000
余水倍、郭隆晨、顏進祥、陳宏宇、蘇宣翰、劉桓吉,八十七年度都會區地下地質與工程環境調查研究-活動斷層及地盤下陷水準測量-台北都會區工程地質,中央地質調查所報告第87-005號,1998
余水倍、郭隆晨、顏進祥,1998瑞里地震之同震變形,第七屆台灣地區地球物理研討會,23-32頁,1998
李明書、劉彦求、林偉雄、林啟文,經濟部中央地質調查所施政計畫報告-活動斷層調查報告(觸口斷層),經濟部中央地質調查所,2003
林朝棨,台灣地形,台灣省文獻委員會,共242頁,1957
林慶偉、吳炫宗、蕭崇利,嘉義地區活動斷層研究:梅山斷層與九芎坑斷層之初步研究。中國地質學會88年年會論文集,279-280頁,1999。
許雅儒,由GPS觀測資料探討宜蘭平原的伸張變形,國立中央大學應用地質研究所碩士論文,1999
郭隆晨,高精度GPS衛星測量在地殼變形觀測之研究,國立交通大學土木工程學系博士論文,2001
詹海波,以GPS觀測量估算嘉南地區1996~2000年間之地殼變形,國立中央大學地球物理研究所碩士論文,2000
黃鑑水、劉桓吉、張憲卿,台灣南部觸口斷層之地質調查與探勘研究(一),國科會防災科技報告,第81-22號,1992
黃鑑水、張憲卿、劉桓吉,台灣南部觸口斷層之地質調查與探勘,經濟部中央地質調查所彙刊,第9號,第51-76頁,1994
楊貴三,台灣活斷層的地形學研究─特論活斷層與地形面關係。中國文化大學地學研究所博士論文,共178頁,1986。
楊耿明、黃旭燦、吳榮章、李民、丁信修、梅文威,大尖山—觸口逆衝斷層系統的地下構造及演化特性。中國地質學會90年年會摘要, 82-84頁,2001。
陳文山,地震地質調查及活動斷層資料庫建置:(2/5),經濟部中央地質調查所報告92-7號, 2003
陳柔妃,嘉南地區活動構造之地形計測指標研究,國立成功大學地球科學研究所碩士論文,1999
劉彦求、盧詩丁、林啟文、林燕慧、李明書,經濟部中央地質調查所施政計畫報 告-活動斷層調查報告(九芎坑斷層),經濟部中央地質調查所,2003
張建興、辛在勤、王乾盈,1998年嘉義地震-一長逆衝構造上的片段錯動,第七屆台灣地區地球物理研討會,1~7頁,1998
張徽正、林啟文、陳勉銘、盧詩丁,台灣活斷層概論:五十萬分之一台灣活動斷層分佈說明書,經濟部中央地質調查所,台北,共10頁,1998
盧詩丁、林啟文、石同生,經濟部中央地質調查所施政計畫報告-活動斷層調查報告(木屐寮斷層),經濟部中央地質調查所, 2000
盧詩丁、林啟文、石同生,經濟部中央地質調查所施政計畫報告-活動斷層調查報告(六甲斷層),經濟部中央地質調查所, 2000
Angelier, J., Preface to the special issue on ”Geodynamics of the Euraisan-Philippine Sea Plate Boundary”, Tectonophysics, 125, pp. IX-X, 1986.
Angelier, J., E. Barrier, H. T. Chu, Plate collision and paleostress trajectories in a fold-thrust belt: the Foothills of Taiwan, Tectonophysics, 125, 161-178, 1986.
Beutler, G., I. Bauerrsima, W. Gurtner, M. Rothacher, and T. Schildknecht, Atmospheric refraction and other important biases in GPS carrier phase observations, Monofraph 12, School of Surveying, University of New South Wales, Kensington, 15-43, 1988.
Blewitt, G., Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km, J. Geophys. Res., 94, 10187-10203, 1989.
Bock, Y., crustal deformation and Earthquakes, Geotimes, 39, 16-18, 1994.
Chang, Y. L., Lee, C. I., Lin, C. W., Hsu, C. H. and Mao, E. W., Inversion tectonics in the fold-thrust belt of the foothills of the Chiayi-Tainan area, southwestern Taiwan. Petrol. Geol. Taiwan, no.30, 163-176,1996.
Dixon, T.H., 1991. An introduction to the Global Position System and some geological applications. Rev. Geophysics, 29, 249-276.
Dong, D., and Y. Bock, GPS network analysis with phase ambiguity resolution applied to crustal deformation studies in California, J. Geophys. Res., 94, 3949-3966, 1989.
Gurtner, W., G. Beutler, I. Bauersima, and T. Schildtknecht, Evaluation of GPS carrier difference observation: The Bernese second generation software package. First International Symposium on Precise Positioning with the GPS, Maryland, Rockville, 1985.
Hanger, B.H., King, R.W. and Murray, M.H., 1991. Measurement of crustal deformation using the Global Position System. Annu. Rev. Earth Planet. Sci., 19, 351-382.
Ho, C.S., Foothills tectonics of Taiwan , Bull. Geok. Surv. Taiwan, 25, 9-28, 1976.
Hudnut, K., 1995. Earthquake geodesy and hazard monitoring, Rev. Geophys., 33, Suppl., 249-255.
Hsu, Y. J., M. Simons, S. B. Yu, L. C. Kuo, and H. Y. Chen. A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt: Earth Planet. Sci. Lett., 211, 287-294 , 2003.
Hung, J.H., Wiltschko, D.V., Lin, H.C., Hickman, J.B., Fang, P., and Bock, Y., Structure and motion of the southwestern Taiwan fold and thrust Belt, TAO, 10, 543-586,1999.
Johnson, H., Monument motion and measurements of crustal velocities, Geophys Res Lett, 22, 2905-2908, 1995.
Kao, H., and R. J. Rau, Detailed structures of the subducted Philippine Sea plate beneath northeast Taiwan: A new type of double seismic zone. J. Geophys. Res., 104, 1015-1033, 1998.
Kao, H., S. J. Shen, and K. F. Ma, Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region, J. Geophys. Res., 103, 7211-7229, 1998.
Kao, H., G. C. Huang, and C. S. Liu, Transition from oblique subduction to collision in the northern Luzon arc-Taiwan region: Constraints from bathymetry and seismic observations, J. Geophys. Res., 105, 3059-3079, 2000.
Kao, H., and P. R. Jian, Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data, Tectonophys., 333, 179-198, 2001.
Lee, T.Q. and J. Angelier, Analysis of magnetic susceptibility anisotropy of the sedimentary and its tectonic implications, paper presented at International Conference and 3rd Sino-French Symposium on Active Collision in Taiwan, Geol. Soc. Of China, Taipei, March 22-23,1995.
Liu, C. C., The Ilan Plain and the southwestward extending Okinawa Trough, J. Geol. Soc. China, 3, 183-193, 1995.
Mao, A., C. G. A. Harrison, and T. H. Dixon, Noise in GPS coordinate time series, J. Geophys. Res., 104, 2797-2816, 1999.
Matsu’ura M., and D. D. Jackson and A. Cheng, Dislocation model for aseismic crustal deformation at Hollister, California, J. Geophys. Res., 91, 12661-12674, 1986.
Mindlin, R. D., Force at a point in the interior of a semi-infinite solid, Physics, 7, 195-202, 1936.
Mouthereau F., O. Lacombe, B. Deffontaines, J. Angelier, and S. Brusset. Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophys., 333, 293-322, 2001.
Nikolaidis, R., Observation of geodetic and seismic deformation with Global Positioning System, Ph.D. dissertation, Univ. of Calif., San Diego, 249pp., 2002.
Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seism Soc. Am., 75, 1135-1154, 1985.
Rothacher, M. and L. Mervart(Eds.), Bernese GPS software v.4.0. Astronomical Institute, University of Berne, Switzerland, 418pp., 1996.
Segall, P., and J.L. Davids, GPS applications for geodynamics and earthquakes studies, Annu. Rev. Earth Planet Sci., 25, 301-336, 1997.
Segall, P., and M. Matthews, Time dependent inversion of geodetic data, J. Geophys. Res., 102, 22391-22409, 1997.
Shen, Z., B.X. Ge., D.D. Jackson, D. Potter, M. Cline, and L. Sung, Northridge earthquake ruptures based on the Global Positioning System Measurements, Bull. Seism. Soc. Am., 86(1B), 37-48, 1996.
Seno, R., S. Stein, and A. E. Gripp, A model for the Philippine Sea plate consistent with NUVEL-1 and geological data, J Geophys. Res., 98, 17941-17948, 1993.
Shin, T.C., Application of wave form modeling to determine focal mechanisms of the 1993 Tapu earthquake and its aftershocks, TAO, 6, 167-179, 1995.
Suppe, J., Imbricate structure of western Foothills belt, south-central Taiwan, Petrol. Geol. Taiwan, 17, 1-16,1980.
Suppe, J., C.T. Hu, and Y.J. Chen, Present-day stress directions in western Taiwan inferred from borehole elongation, Petrol. Geol. Taiwan, 21, 1-12, 1985.
Tsan, S.F. and Keng, W.P., The Neogence rocks and major structure features of southwestern Taiwan, Petrol. Geol. Soc. China, 11, 45-49, 1968.
Wells, D. E., N. Back, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M. Nakiboglu, K. P. Schwarz, J. Tranquilla, and P. Vanicek, Guide to GPS Positioning, Canadian GPS Associates Fredericton, New Brunswick, Canada, 1986.
Williams, S., The effect of coloured noise on the uncertainties of rates estimated from geodetic time series, J. Geodesy, 76, 483-494, 2003.
Yeh, Y. H., E. Barrier, C. H. Lin, and J. Angelier, Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophysics, 200, 267-280, 1991.
Yeh, Y.H., Barrier, and J. Angelier, Stress tensor analysis in the Taiwan area from focal mechanism of earthquakes, Tectonophysics, 200, 267-280, 1991.
Yu, S.B., H.Y. Chen, Global Position System measurements of crustal deformation in Taiwan-arc continent collision zone. TAO, 5, 477-489, 1994.
Yu, S.B., and H.Y. Chen, Spatial variation of crustal strain in the Taiwan area, paper presented at 6th Taiwanese Geophysical Meeting, Univ. ChungChen, Chiayi, November 1996.
Yu, S.B., H.Y. Chen, and L.C. Kuo, Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59, 1997.
Yu, S.B., H.Y. Chen,. Strain accumulation in Southwestern Taiwan. TAO, 9, 31-35, 1998.
Yu, S.B., L.C. Kuo, R.S. Punongbayan and E.G. Ramos, GPS observation of crustal motion in the Taiwan-Luzon region, Geophys. Res. Lett., 26, 923-926, 1999.
Yu, S. B., L. C. Kuo, Y. J. Hsu, H. H. Su, C. C. Liu, C. S. Hou, J. F. Lee, T. C. Lai, C. C. Liu, C. L. Liu, T. F. Tseng, C. S. Tsai, and T. C. Shin, Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan earthquake, Bull. Seismol. Soc. Am., 91, 995-1012, 2001.
Yu, S. B., Y. J. Hsu, L. C. Kuo, H. Y. Chen, and C. C. Liu, GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108, doi:10.1029/2003JB002396, 2003.
Zhang, J., Y. Bock, H. Johnson, P. Fang, S. Williams, J. Genrich, S. Wdowinski, and J. Behr, Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035-18,055, 1997.
指導教授 蔡義本、余水倍
(Yi-Ben Tsai、Shui-Beih Yu)
審核日期 2004-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明