博碩士論文 91642005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.218.61.16
姓名 詹忠翰(Chung-Han Chan)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 集集地震同震及震後應力演化與地震活動之相關性
(Stress Evolution Associate with Seismicity during Coseismic and Postseismic Periods of the 1999 Chi-Chi, Taiwan, Earthquake)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 2005 年宜蘭雙主震之震源破裂滑移分析
★ 1999 集集地震後之黏彈性鬆弛效應★ 台灣地區大型地震產生的庫倫應力變化與地震活動相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了比較在集集震前與震後不同時間區段間地震活動度之變化,避免人為或測站因素造成地震目錄不完整而影響估算之地震活動度變化,本研究搜尋自1995年後規模大於台灣地區地震規模完整度之地震。發現震後在車籠埔斷層上盤、北端以及南端延伸處,與嘉義地區地震活動具有上升之現象。更甚者,此處亦為在震後3個月之內活動度上升最多之處,此一地區正座落於主震應力上升之區域。而震後3-53個月其間亦反映在南山、高屏、花東外海與台中外海皆呈現地震活動下降之情況。此處亦為在震後3個月之內活動度上升相對較少之處,此一地區正座落於主震應力下降之區域。顯示該地區同時受到動態應力誘發與靜態應力下降造成地震陰影帶之影響。
研究中並以集集同震破裂模型計算對於鄰近區域造成應力重新分佈之狀態並且比較集集震後0-3個月之地震分佈。發現大部分之地震皆座落於主震影響而更趨於破裂之區域。然而並非所有地震皆能以靜態庫倫應力變化模型解釋之,在車籠埔斷層北端之地震活動並無法以應力變化之計算結果解釋之。造成此現象可能原因為逆推而得之錯動模型並無法忠實呈現集集破裂型態或是動態應力上升因而誘發該處斷層之破裂而產生餘震。為了從主震應力轉移之角度討論震後滑移之分佈,計算車籠埔斷層斷坡以及滑脫面上受到集集同震期間造成之應力變化。發現在斷坡部分,正向應力變化之結果較為符合震後滑移分佈因此推估斷層面上擁有較大之摩擦係數。在滑脫面部分,剪應力變化之結果較為符合震後滑移分佈因此推估斷層面上擁有較小之摩擦係數。文中亦檢視震後地震之震源位置與震源機制面上之庫倫應力變化。假設有效摩擦係數為零之情況下,主震造成震後地震剪應力之統計結果,對於逆衝、走向滑移,以及正斷層型態地震分別有74%、61%,以及63%受到同震應力增加超過0.01 bar。當有效摩擦係數為0.4,計算前、後地震二結點面上之應力變化。比較二者受到同震應力增加超過0.1 bar之比例,逆衝型態地震在震後上升26%;走向滑移型態地震在震後上升18%。而在集集地震後第1年間,陸續發生10次之大型地震。大部分較佳破裂面上之應力狀態受到主震及主震與相繼之大型地震累加而更趨於發生地震。
本研究除了以主震應力轉移之角度討論震後滑移之分佈,更進一步以震後滑移之角度計算集集震後15個月之應力變化。顯示在震後期間主震以南之區域呈現應力上升之勢;在中央山脈地區則為應力下降;在東部外海部分,則呈現應力小幅上升。比較此結果與震後15-53個月與3-15個月地震活動度之差異性,發現在台灣島內大部分區域之地震活動度下降並無法以震後滑移造成之應力變化解釋之,此一現象說明集集震後一定時間內之地震行為仍然由餘震衰減所主導著。然而地震活動度衰減最劇烈之處為車籠埔斷層東方五十公里的中央山脈東側。比對震後應力變化,此區恰巧位於震後應力下降之處。
若考慮震後滑移與集集震後之黏彈性鬆弛效應造成之地表變形並且比較GPS在震後之觀測值。發現在上盤地區震後滑移之特性主導了震後變形,黏彈性效應則相對不明顯。在下盤地區,發現除了少部分位處於車籠埔斷層附近之測站,黏彈性滑移之效應無論在方向以及量級上皆更趨近於觀測結果。本研究進一步引用中央地質調查所之跨斷層重複精密水準測量之結果。發現在車籠埔斷層下盤之處大致上自西向東逐漸沈降,此一現象符合黏彈性鬆弛效應造成之地變形。然而在上盤地區顯示自西向東具有明顯抬升之趨勢,此一結果並不符合黏彈性鬆弛效應造成之地變形。根據集集主震震後之黏彈性回跳以集集及震後之震後滑移之特性,計算附近斷層面上在同震、震後15個月,以及震後50年之應力變化。在同震期間,彰化斷層沿線呈現剪應力上升、正向應力下降之趨勢。而大茅埔-雙冬-哮貓與水里坑斷層則呈現剪應力下降、正向應力上升之趨勢。在震後15個月,受到主震造成之黏彈性回跳以及震後滑移之影響,彰化斷層在淺部呈現剪應力下降、深部上升之趨勢,正應力則呈現附近所有斷層更趨向於破裂。在震後50年後,計算附近斷層受到主震及15個月震後滑移造成之黏彈性回跳以及震後滑移本身所造成之應力變化之總和。顯示彰化斷層在深部、大茅埔-雙冬-哮貓與水里坑斷層之大部分區域呈現剪應力上升,其餘地區則為下降;對於正向應力,除了彰化斷層在淺部呈現應力上升,其餘地區則為下降。
比較利用GPS資料逆推集集主震之破裂模型與將集集破裂簡化成斷坡與滑脫面上二個子斷層造成之靜態庫倫應力變化,二者皆顯示在滑脫面上與更深處,以及滑脫面終點處呈現應力上升之貌,此二區正為震後三個月之內地震活動度最為頻繁之區域。在台灣地區,當地震發生後數分鐘內,中央氣象局之速報系統便將地震之震源位置以及地震規模放置於網站中或藉由氣象局發布之電子報取得相關資訊。在震後數小時內,中央研究院地球所資料處理中心管理之 Broadband Array in Taiwan for Seismology 利用地震矩張量計算該地震之震源機制並放置於網站中或藉由氣象局發布之電子報取得相關資訊。根據台灣地區地震規模與斷層參數之經驗公式便可在地震發生後短時間內求得其可能之斷層參數並計算應力之變化。藉此便可預估餘震可能發生位置而得到餘震預警之效果。
摘要(英) In the past decade, many studies had proved the influences of static stress changes on spatial or temporal distribution of the aftershocks and further large earthquakes. By contrast, other studies have deepened the argument by resolving stress changes on aftershock focal mechanisms, which removes the assumption that the aftershocks are optimally oriented for failure.
The 21st September 1999 Chi-Chi, Taiwan, earthquake (Mw=7.6) produced a remarkable set of data and clearly exhibits stress transfer. Large amount of GPS static measurements and strong motion acceleration records recorded this event. Such a data set offers a unique opportunity to understand the earthquake process and the generation of ground motions. Furthermore, 7 of continuous monitoring GPS stations were set up near the Chelungpu fault, mostly within three weeks after the occurrence of Chi-Chi mainshock and about 80 campaign-surveyed stations were resurveyed up to 7 times from September 1999 to December 2000.
We explore how Coulomb stress transfer might control aftershock distribution, long-term seismicity, and postseismic slip in a ramp-flat thrust fault system. The Mw=7.6 Chi-Chi shock, with a surface-cutting 30°-dipping ramp fault merging into a near-horizontal d?collement, is representative of continental thrust systems throughout the world, and so inferences drawn from this uniquely well-recorded event may be widely applicable elsewhere. The 3D distribution of aftershocks and their focal mechanisms are consistent with the calculated spatial distribution of Coulomb stress changes. Here one compares the percentage of planes on which failure is promoted after the main shock relative to the percentage beforehand. For Chi-Chi we find a 28% increase for thrust and an 18% increase for strike-slip mechanisms, commensurate with increases reported for other large main shocks. However, perhaps the chief criticism of static stress triggering is the difficulty in observing predicted seismicity rate decreases in the stress shadows, or sites of Coulomb stress decrease. Detection of sustained drops in seismicity rate demands a long catalog with a low magnitude of completeness and a high seismicity rate, conditions that are met at Chi-Chi. We find four lobes with statistically significant seismicity rate declines of 40–90% for 50 months, and they coincide with the stress shadows calculated for strikeslip faults, the dominant faulting mechanism. The rate drops are evident in uniform cell calculations, 100-month time series, and by visual inspection of the M≧3 seismicity. An additional reason why detection of such declines has proven so rare emerges from this study: there is a widespread increase in seismicity rate during the first 3 months after Chi-Chi, and perhaps many other main shocks, that might be associated with a different mechanism. And nearly all the M≧6 aftershocks are found to be promoted by several bars as a result of the mainshock.
We further consider whether the stresses imparted by the coseismic slip could have triggered postseismic slip on the fault. We find a fair correlation between the inferred postseismic slip and regions of calculated stress increase on the ramp and d?collement. The correlation of stress with slip is best if the fault friction is very high (μ?=0.8) along the uppermost 5 km of the ramp, and if friction is exceedingly low (μ?=0.0) along the d?collement. Finally, we search for a change in aftershock distribution and rate caused by the postseismic d?collement slip. We find a marked decrease in aftershocks with respect to Omori decay where the postseismic slip is calculated to further depress the Coulomb stress, and an increase of seismicity and the rate of M ≧ 5.0 earthquakes in the corresponding positively stressed zones.
The GPS observations suggest significant slip on the hanging wall of the Chelungpu fault, while little surface deformation is observed on the footwall. Repeated precise leveling survey across central Taiwan also shows significant uplift on the hanging wall of the Chelungpu faults during Aug. 2002 to Mar. 2004. we consider both of the afterslip and viscoelastic rebound behaviors during postseismic period to compare with geodesy data. They show good correlation between GPS observation on the hanging wall with the calculation deformation based on afterslip. On the footwall, by contrast, the calculation deformation based on viscoelastic rebound seems fit the observation better.
We also estimate the stress evolution along the faults near the Chelungpu fault. During coseismic period, the shear stress along Changhua fault seems promoted by mainshock, while the normal stress is dropped. For the Shiaomao and Hsuilikeng faults, the normal stress is promoted, while the shear stress is dropped. During 15 mo. after Chi-Chi, the shear stress is dropped at shallow part of the Changhua fault, while it is enhanced at deep part. It also shows the normal stress along all of the faults is promoted them to failure. 50 years after Chi-Chi, the shear stress at deeper part of the Changhua, Shiaomao and most part of Hsuilikeng is promoted to failure. For the normal stress, except at shallow part of the Changhua fault, it shows stress dropped at rest of the faults.
關鍵字(中) ★ 集集地震
★ 黏彈性回彈
★ 庫倫應力
關鍵字(英) ★ Chi-Chi earthquake
★ Coulomb stress change
★ visco-elastic rebound
論文目次 摘要 ……………………………………………………………………………………….………… i
Abstract…………………………………………………………………………………………… iii
誌謝………………………………………………………………………………………….……… v
目錄 …………………………………………………………………………………………………vi
圖目…………………………………………………………………………………………...…… ix
表目 ………………………………………………………………………………………..…..… xii
第一章 緒論………………………………………………………………………………………… 1
1-1 前人研究……………………………………………………………………………..…………1
1-2 研究動機及目的……………………………………………………………………..…………3
1-3 本文內容……………………………………………………………………………..…………4
第二章 台灣地區地質與地震活動特性…………………………………………………..……… 10
2-1 台灣地區之大地應力………………………………………………………………...……… 10
2-2 台灣中部地區地質簡論……………………………………………………………………… 10
2-3 地震資料之完整性…………………………………………………………………………… 10
2-4 震源機制……………………………………………………………………………………… 11
2-5 集集地震前後之地震活動度變化…………………………………………………………… 11
2-5-1 格點參數選取………………………………………………………………………..…… 12
2-5-2 集集地震前後地震活動度變化………………………………………………………..… 12
2-5-3 地震活動度變化之顯著性……………………………………………………………….. 13
2-5-4 集集地震後15 個月地震活動度變化…………...……………………………………… 14
第三章 集集地震同震應力變化……………………………..…………………………………… 32
3-1 靜態庫倫應力之原理…………………………………...…………………………………… 32
3-1-1 指定破裂面上之庫倫應力變化………………………..………………………………… 33
3-1-2 最佳破裂面上之庫倫應力變化…………………………..……………………………… 34
3-2 同震地表變形與錯動模型…………………………………………………………………… 36
3-3 簡易同震應力變化模型……………………………………………………………………… 37
3-3-1 地震活動地殼中理論最大庫倫應力變化…………………..…………………………… 37
3-3-2 單一深度理論最大庫倫應力變化……………………………..………………………… 38
3-4 同震應力變化與餘震分佈………………………………………...………………………… 38
3-4-1 平面分佈…………………………………………………………..……………………… 38
3-4-2 剖面分佈……………………………………………………………..…………………… 39
3-5 同震應力變化與震後滑移…………………………………………………………………… 39
3-6 同震應力變化與震後台灣地區地震活動…………………………………………………… 40
3-6-1 深度與震源機制分析應力變化………………………………………..………………… 40
3-6-2 作用於地震震源機制面上之同震應力…………………………………..……………… 41
3-6-3 震後規模大於6.0 之地震…………………………………………………..…………… 41
第四章 集集地震震後應力變化………………………………………………………..………… 64
4-1 震後滑移機制及前人相關研究……………………………………………………………… 64
4-2 震後地表變形………………………………………………………………………………… 64
4-3 震後應力與地震活動度變化之關係………………………………………………………… 66
第五章 集集地震震後黏彈性變形………………………………………………………..……… 72
5-1 黏彈性應力變化之原理……………………………………………………………………… 72
5-1-1 類球體運動解………………………………………………………………………..…… 76
5-1-2 超環面運動解………………………..…………………………………………………… 82
5-2 簡易黏彈性位移與應力變化模型…………………………………………………………… 84
5-3 黏彈性變形與震後變形……………………………………………………………………… 84
5-3-1 台灣地區流變模型……………………..………………………………………………… 84
5-3-2 震後滑移與黏彈性變形…………………..……………………………………………… 85
5-4 車籠埔斷層鄰近區域應力演化……………………………………………………………… 86
第六章 討論與結論…………………………………..……….…………………………………… 99
6-1 討論…………………………………………………….……………………………………… 99
6-2 結論……………………………………………………………………………………………101
參考文獻………………………………………………...………………………………………… 107
附錄一……………………………………………………...……………………………………… 112
參考文獻 Anderson, E.M. (1951), The dynamics of faulting and dyke formation with applications to Britain, Edinburgh, United Kingdom, Oliver and Boyd. 206 p.
Chan, C. H. and K. F. Ma (2004), Association of Five Moderate-Large Earthquakes to the Faults in Taiwan. Terr. Atmos. Oceanic Sci., 11, 97-110.
Cheng, W. B. (2000), Three-dimensional crustal structure around the source area of the 1999 Chi-Chi earthquake in Taiwan and its relation to the aftershock locations, Terr. Atmos. Oceanic Sci., 11, 643-660.
Chi, W.-C., and D. Dreger (2004), Crustal deformation in Taiwan: Results from finite source inversions of six Mw > 5.8 Chi-Chi aftershocks, J. Geophys. Res., 109, B07305, doi:10.1029/2003JB002606.
Cohen, S.C. (1982), A multilayer model of time dependent deformation following an earthquake on a strike slip fault, J. Geophys. Res., 87, 5409-5421.
De Mets C., R.G. Gordon, D.F. Argus, S. Stein (1990), Current plate motions, Geophys. J. Int., 101, 425-478
Dominguez, S., J. P. Avouace, and R. Michel (2003), Horizontal coseismic deformation of the 1999 Chi-Chi earthquake from SPOT satellite images: implications for the seismic cycle along the western foothills of Central Taiwan, J. Geophys. Res., 108, doi:10.1029/2001JB000951.
Felzer, K. R. and E. E. Brodsky (2005), Testing the stress shadow hypothesis, J. Geophys. Res., 110, B05S09, doi:10.1029/2004JB003277.
Freed, A. M. and J. Lin (2001), Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer, Nature, 411, 180-183.
Gilbert, F., and A.M. Dziewonski (1975), An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Philos Trans. R. Soc. London, Ser. A, 278, 187-269.
Hardebeck, J. L., J. J. Nazareth, and E. Hauksson (1998), The static stress change triggering model: Constraints from two southern California aftershocks sequences, J. Geophys. Res., 103, 24,427– 24,437.
Harris, R. A. (1998), Introduction to special section: Stress triggers, stress shadows, and implication for seismic hazard, J. Geophys. Res., 103, 24,347– 24,358.
Hsu, Y. J., M. Simons, S. B. Yu, L. C. Kuo, and H. Y. Chen (2003), A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt, Earth Planet. Sci. Lett., 211, 287-294.
Hu, J. C., J. Angelier, J. C. Lee, H. T. Chu, and D. Byrne (1996), Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D Finite-element numerical modeling. Tectonophys., 255, 243-268.
Huchon, P., 1986. Comments on ‘Kinematics of the Philippine Sea plate’ eds Ranken, B., Cardwell, R.K. & Karig, D.E., Tectonics, 5, 165–168.
Iwasaki, T. (1985), Quasi-static deformation due to a dislocation source in a Maxwellian viscoelastic earth model, J. Phys. Earth, 33, 21-43.
Ji, C., D. V. Helmberger, D. J. Wald, and K.-F. Ma (2003), Slip history and dynamic implication of the 1999 Chi-Chi Taiwan, earthquake, J. Geophys. Res., 108(B9), 2421, doi:10.1029/2002JB001764
Johnson, K. M. and P. Segall (2004), Imaging the ramp-d?collement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake, Tectonophys., 378, 123-139.
Johnson, K. M., P. Segall, and S. B. Yu (2005), A viscoelastic earthquake cycle model for Taiwan, J. Geophys. Res., 110, B10404, doi:10.1029/2004JB003516.
Kao, H. and W.-P. Chen (2000), The Chi-Chi earthquake sequence: active, out-of-sequence thrust faulting in Taiwan, Science, 288, 2346-2349.
Kao, H., Y.-H. Liu, W.-T. Liang, and W.-P. Chen (2002) ,Source parameters of regional earthquakes in Taiwan: 1999 – 2000 including the Chi-Chi earthquake sequence, Terr. Atmos. Oceanic Sci., 13, 279– 298.
Kimura, T. and T. Miyatake (2005), Relationship between characteristic of dynamic stress changes and rupture process on a dipping fault, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract S43A-1048.
King, G. C. P., and M. Cocco (2001), Fault interaction by elastic stress changes: New clues from earthquake sequences, Adv. Geophys., 44, 1–28.
Liang, W.-T., Y.-H. Liu, and H. Kao (2003), Source parameters of regional earthquakes in Taiwan: January–December 2001, Terr. Atmos. Oceanic Sci., 14, 249– 260.
Liang, W.-T., Y.-H. Liu, and H. Kao (2004), Source parameters of regional earthquakes in Taiwan: January–December 2002, Terr. Atmos. Oceanic Sci., 15, 727– 741.
Lin, C.-H. (2000), Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 324 189–201.
Lin, J., and R. S. Stein (2004), Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res., 109, B02303, doi:10.1029/2003JB002607.
Ma, K.-F., J. Mori, S.-J. Lee, and S. B. Yu (2001), Spatial and temporal slip distribution of the Chi-Chi, Taiwan, earthquake from strong motion, teleseismic and GPS data, Bull. Seismol. Soc. Am., 91, 1069-1087.
Ma, K.-F., and S.-I. Wu (2001), Quick slip distribution determination of moderate to large inland earthquakes using near-source strong motion waveforms, Earthquake Eng. Earthquake Seismol., 3, 1 –10.
Okada, T. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018-1040.
Omori, F . (1894), On the after-shocks of earthquakes , J . College S ci., Imp. Univ. Tokyo, 7, 111-200.
Parsons, T., R. S. Stein, R. W. Simpson, and P. A. Reasenberg (1999), Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults, J. Geophys. Res., 104, 20,183– 20,202.
Parsons T., A. Barka, S. Toda, R. S. Stein and J. H. Dieterich (2000), Influence of the 17 August 1999 Izmit earthquake on seismic hazards in Istanbul, in A. Barka, O. Kozaci, S. Akyuz and E. Altunel (Eds.), The 1999 Izmit and Duzce Earthquakes: Preliminary results, pp. 295-310.
Pollitz, F. F. (1992), Postseismic relaxation theory on the spherical Earth, Bull. Seismol. Soc. Am., 82, 422-453.
Pollitz, F. F. and I. S. Sacks (1996), Viscosity structure beneath northeast Iceland, J. Geophys. Res., 101, 17771-17793.
Pollitz, F. F. (1997), Gravitational-viscoelastic postseismic relaxation on a layered spherical Earth, J. Geophys., Res., 102, 17921-17941.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), Numerical Recipies in Fortran: The Art of Scientific Computing, 964 pp., Cambridge Univ. Press, New York.
Reid, H.F. (1910), The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission, 2, Carnegie Institution of Washington, Washington, D.C.
Ranken, B., Cardwell, R.K. & Karig, D.E., 1984. Kinematics of the Philippine Sea plate, Tectonics, 3, 555–575.
Romanowicz, B. (1987), Multiplet-multiplet coupling due to lateral heterogeneity: asymptotic effects on the amplitude and frequency of the Earth’s normal modes, Geophys. J. R. astr. Soc., 90, 75-100.
Rundle, J.B. (1982), Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered Earth, J. Geophys. Res., 87, 7787-7796.
Seeber, L., and J. G. Armbruster (2000), Earthquakes as beacons of stress change, Nature, 407, 69– 72.
Seno, T (1977), The instantaneous rotation vector of the Philippine Sea Plate relative to the Eurasian Plate, Tectonophys., 42, 209-226.
Seno T., Stein S., Gripp A. E. (1993), A model for the motion of the Philippine Sea plate consistent with NUVEL-l and geological data, J. Geophys. Res., 98, 17941–17948.
Sheu, S.-Y. and C.-F. Shieh (2004), Viscoelastic–afterslip concurrence: a possible mechanism in the early post-seismic deformation of the Mw 7.6, 1999 Chi-Chi (Taiwan) earthquake, Geophys. J. Int., 159(3), 1112-1124. doi: 10.1111/ j.1365-246X.2004.02437.x.
Stein, R. S., G. C. P. King, and J. Lin (1994), Stress triggering of the 1994 M = 6.7 Northridge, California, earthquake by its predecessors, Science, 265, 1432–1435.
Stein, R. S. (1999), The role of stress transfer in earthquake occurrence, Nature, 402, 605– 609.
Suppe, J. (1985), Principles of Structural Geology, Prentice-Hall, Englewood Cliffs, 537 pp.
Suppe, J. (1987), The active Taiwan mountain belt. In: Schaer, J.P., Rodgers, J. (Eds.), Anatomy of Mountain Chains. Princeton Univ. Press, Princeton, NJ, 277– 293.
Takeuchi, H., and M. Saito (1972), Seismic surface waves, in Methods in Computational Physics: Seismology, edited by B. Bolt, S. Fernbach, and M. Rotenberg, pp. 217-294, Academic Press, San Diego, Calif..
Toppozada, T. R., D. M. Branum, M. S. Reichle, and C. L. Hallstrom (2002), San Andreas fault zone, California: m ≧5.5 earthquake history, Bull. Seismol. Soc. Am., 92, 2555–2601.
Utsu, T. (1961), A statistical study on the occurrence of aftershocks, Geoph. Magazine, 30, 521-605.
Waldhauser, F. and W. L. Ellsworth (2000), A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, Bull. Seism. Soc. Am., 90, 1353-1368.
Wang, C.-Y., C.-L. Li and H.-Y. Yen (2002), Mapping the northern portion of the Chelungpu fault, Taiwan by shallow reflection seismics, Geophys. Res, Lett., 29, 10.1029/2001GL014496.
Wang, J.-C., C.-F. Shieh, and T.-M. Chang (2003) Static stress changes as a triggering mechanism of a shallow earthquake: Case study of the 1999 Chi-Chi (Taiwan) earthquake, Phys. Earth Planet. Inter., 135, 17–25.
Wang, W.-H. (2000) Static stress transfer and aftershock triggering by the 1999 Chi-Chi earthquake in Taiwan, Terr. Atmos. Oceanic Sci., 11, 631-642.
Wang, W.-H., S.-H. Chang, and C.-H. Chen (2001) Fault slip inverted from surface displacements during the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 91, 1167– 1181.
Wang, W.-H., and C.-H. Chen (2001) Static stress transfer by the 1999 Chi-Chi, Taiwan, earthquake: Effects on the stability of the surrounding fault systems and aftershock triggering with a 3D fault-slip model, Bull. Seismol. Soc. Am., 91, 1041–1052.
Wen, Y.-Y., K.-F. Ma, Validate Kunlun finite-fault model using regional surface waves, in prep.
Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., 72(3), 373– 382.
Yagi, Y., M. Kikuchi (1999), Spatiotemporal distribution of a source rupture process for the Taiwan earthquake (Ms=7.7), at http:///www.eic.eri.u-tokyo.ac.jp/yuji/taiwan/taiwan.html/.
Yen, H.-Y. and Y.-H. Yeh (1998), Two-dimensional crustal structures of Taiwan from gravity data, Tectonics, 17, 104-111.
Yu, S.B., H.Y. Chen, and L.C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophys, 274, 41-59.
Yu, S.B., L.-C. Kuo, Y.-J. Hsu, H.-H. Su, C.-C. Liu, C.-S. Hou, J.-F. Lee, T.-C. Lai, C.-C. Liu, C.-L Liu, T.-F. Tseng, C.-S. Tsai, T.-C Shin (2001), Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake, Bull. seism. Soc. Am., 91, 995–1012.
Yu, S.-B., Y.-J. Hsu, L.-C. Kuo, and H.-Y. Chen (2003), GPS measurement of postseismic deformation follow-ing the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108(B11), 2412, doi:10.1029/2003JB002396.
Zeng, Y. and C.-H. Chen (2001), Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake, Bull. seism. Soc. Am., 91, 1088-1098
李憲忠(2003),九二一集集地震三維震源過程與震波傳遞分析,國立中央大學地球物理研究所博士論文。
沈正康、万永格、甘衛軍、曾躍?、任群(2003),東昆侖活動斷裂帶大地震之間的黏彈性應力触?研究,地球物理學報,第46卷,第6期,786-795。
許雅儒(2004),集集地震之震前、同震及震後變形模式研究,國立中央大學地球物理研究所博士論文。
景國恩、饒瑞軍、侯進雄(2005),1999年MW7.6集集大地震震後變形:跨斷層重複精密水準測量成果,中國地質學會九十四年年會暨學術研討會會議論文。
楊耿明,黃旭燦,吳榮章,丁信修,李長之,梅文威,徐祥宏(2003),斷層活性觀測與地質潛勢評估:台灣陸上斷層帶地質構造質與地殼變形調查研究(4/5)-台灣中部麓山帶地區,中央地質調查所報告,第92-11號,51頁。
蔡宜純(2006),1999集集大地震後之黏彈性鬆弛效應,國立中央大學地球物理研究所碩士論文。in prep.
顏銀桐(2002),九二一集集地震之餘震(Mw≧6.0) 震源破裂滑移分佈,國立中央大學地球物理研究所碩士論文。
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2006-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明