博碩士論文 91642010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:18.218.209.8
姓名 陳怡如(Yi-Ru Chen)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 利用遠地地震儀陣列評估台灣地區中大規模地震之震源深度
(Investigation of Source Depths of Major Events in Taiwan Area Using a Dense Array at Teleseismic Distances)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 台灣西南部地區地震釋放之能量與規模關係之研究
★ 高屏地區場址效應之探討★ 以地震儀陣列及基因演算法推估近地表剪力波波速
★ 臺灣中部地區強地動波形模擬★ 利用接收函數法推估蘭陽平原淺層速度構造
★ 蘭陽平原場址效應及淺層S波速度構造★ 探討不同地質區強震站之淺層S波速度構造
★ 震源破裂過程及地表強地動特性之陣列分析研究★ 利用微地動探討桃竹苗地區之場址效應
★ 利用微地動量測探討台灣中部地區之場址效應★ 利用接收函數法分析台灣深部地殼構造
★ 1999年集集大地震前後地震活動、震源機制及地殼應力分佈與變化之研究★ 利用有限斷層法探討台北盆地之場址效應
★ 利用微地動量測探討台北盆地之場址效應★ 以恆春地震探討高屏地區之場址效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 設置於加拿大之Yellowknife Array(YKA)是一展距約20km?20km之小型短週期地震儀陣列,記錄了許多由台灣附近中大規模地震發出之深度波相(depth phase)訊息,深度波相對於震源深度可提供極明確的確認資訊。台灣島由南至北大約400公里,發生於台灣附近的地震事件在區域地震觀測記錄上難以發現這類波相,利用此類深度波相(如pP、pwP、sP)可以提供台灣地震觀測網外地震事件深度之控制而避免深度和震央距離兩者間難以取決的難題。
利用遠域地震儀記錄之初達P波與深度波相之到時時間差來估算地震發生深度是一簡單又直接的方法。由於通常遠地記錄中的深度波相振幅較小,本研究中利用波形叠加來加強深度波相的訊號,再以順推波形模擬計算不同震源深度之各波相波形變化加以輔助深度波相的判別,最後利用波形交互比對計算找出觀測記錄與不同深度模擬波形之最佳擬合波線以推估發震深度之最可能範圍。
本研究首先以兩個發生於台灣島內的地震事件為例,利用本研究方法分析所得震源深度與中央氣象局定位結果和台灣寛頻地震網(Broadband Array in Taiwan for Seismology,BATS)分析結果都相當符合,再配合近震強震資料之P波及S波到時差資料以順推網格搜尋方式進行重新定位分析,結果顯示本方法確實可有效推算震源深度之合理範圍。此外,應用本研究方法分析位於台灣東北部較大規模地震事件,對於測站包覆性不佳而無法以近震資料進行定位分析,或是遠離地震觀測網的事件,依本研究方法分析皆可估算出適當的深度範圍。而應用於2006年屏東地震序列6個較大規模事件之分析也都得到穩定的分析結果。除了第2主震外,依本方法分析所得之深度皆較氣象局原定位結果略淺。由於屏東地震序列之第2主震破裂過程較為複雜,配合近震之強地動資料亦推估此一事件震源應為多次破裂,而本方法決定之深度應為最大破裂產生之深度範圍。配合其他事件之分析結果推論此事件之震源破裂方向可能由淺部持續往深部進行。
深度波相與直達P波之到時差不受絶對時間及發震時間誤差影響,對震源深度可提供極佳的控制;波形模擬計算不同深度之波形記錄則可協助深度波相的判別,本研究綜合了波形擬合方式的優點及深度波相對震源深度絶佳的控制來進行震源深度範圍的估算。本方法雖然主要應用的地震規模範圍著重於ML5.0~7.5間之中大規模之地震事件,對於破裂過程相對複雜(如多重破裂事件)的地震,有時因理論模擬波形與觀測波形不易比對而較難有理想的結果。但整體而言,對於遠離地震觀測網外的地震事件皆能分析得出最佳的震源深度範圍,有助於中大型地震定位時震源深度的範圍判定,對於位於外海有可能引發海嘯的地震相信也能提供良好的深度資訊以助防災預警工作的進行。
摘要(英) The Yellowknife array (YKA), a small-aperture array, recorded many depth phase seismograms from earthquakes which occurred in Taiwan region. Such kinds of phases are unavailable to observe on Taiwan’s local seismic records. The depth phase(pP、pwP、sP、sS and so on) reflected from the surface then traveled to the recording station can provide unequivocal confirmation of focal depth. The pP-P interval depends strongly on focal depth and is independent of clock errors. It can give a good constrain for earthquakes locating that occurred out of seismic network and eliminate a trade-off relationship between the source depth and epicenter determination.
It is a simple and direct way to estimate focal depth using the pP-P interval on teleseismic records. However, the pP phase propagates a little bit longer path than P and dissipates more energy, so that the amplitude of pP phase is normally smaller than direct P. In this study, we proposed to use slant stack procedures to reduce the effects of random noise in the data and to enhance the depth phase signal. The surface reflections arrive behind the direct arrival and may be interfered by scattered P wave energy from both the source and receiver sides. The shape of the interference packet changes with depth and this information supplies a means of estimating the source depth. Comparing the observations with suitable synthetic seismograms will help us to identify the accurate source depth. For this reason, we adopt a forward modeling way to calculate synthetic waveforms in different focal depths to help us to recognize depth phase arrival. Finally, the source depth search can be quantitatively represented by a cross-correlation analysis to find the accuracy focal depth range.
First, we used two events which occurred in the seismic network to check our method is authentic. The result of this analysis showed our method indeed helped us easily control the range of depth and obtain a robust result. Moreover, using forward grid search to look for the best hypocenter location by S-P time difference of TSMIP records provided information about shallow 1-D S wave velocity stracture under the epicenter region at the same time.
Second, we applied our method and procedure to analyze other earthquakes which ML>4.5 and occurred offshore northeastern and southwestern Taiwan. All events are outside of Taiwan seismic network. Some earthquakes were far away from the seismic network and some did not have a good station distribution. The analyzed results of these events showed we can easily control the range of depth and estimate optimal results. The events in offshore southwestern Taiwan were selected from Pingtung Earthquake sequence. In this study, we chose 6 events for analyzing and the best depth solutions were accurately obtained. Analyzed results show that most depths of the offshore Pingtung earthquake sequence are slightly shallower than that reported by CWBSN except for the 2nd event that was the biggest event of the Pingtung earthquake sequence. Combining analyses from near source and teleseismic observations, we concluded that the rupture properties of the 2nd event began at a shallow depth, continued to grow to a depth of 56km where the largest rupture occurred and released the most energy.
Considering the arrival times of surface-reflected phases to locate an event depth, it can provide an excellent constrain in source depth. Moreover, accompanying with the forward waveform simulation in different source depth to help us to identify the accurate depth phase, we took the superiors of both methods to have a result with good stability and high depth resolution. Although this method is mainly applied for the events with a ML from 5.0 to 7.5, which features a complicate rupturing process and sometimes hardly to obtained an idea result from the comparing with theoretical simulation and observed waveforms. However, in overall speaking, it is a reliable method for the events outside of the array in source depth calculation. A simple but robust procedure to identify the depth of a seismic event has been developed and successfully demonstrated.
關鍵字(中) ★ 地震儀陣列
★ 地表反射波相
★ 波束聚集法
★ 視速度
★ 順推波形模擬
★ 順推網格搜尋法
★ 屏東地震序列
關鍵字(英) ★ Yellowknife array
★ depth phase
★ apparent velocity
★ beam forming
★ forward waveform simulation
★ Pingtung earthquake
★ forward grid search
論文目次 摘要 ……………………………………………………………………… i
Abstract ……………………………………………………………………… iii
誌謝 ……………………………………………………………………… vi
目錄 ……………………………………………………………………… vii
圖目 ……………………………………………………………………… ix
表目 …………………………………………………………...………… xii
第一章 緒論……………………………………………………...………… 1
1.1 研究動機及地震定位之簡介……………………………………… 1
1.2 論文章節簡述……………………………………………………… 5
第二章 研究方法………………………………………………..………… 7
2.1 原理說明…………………………………………………………… 7
2.2 資料分析流程…………………………………………...………… 9
2.2.1 觀測波形之叠加處理(Waveform stacking)…………………… 9
2.2.2 遠地波形之模擬計算………………………………….…..……… 14
2.2.3 觀測波形與模擬波形之交叉比對(Cross-correlation)….……… 18
2.3 資料分析之解析度評估…………………………………………… 19
第三章 研究所用之地震資料簡介 ……………………………………… 41
3.1 Yellowknife Array短週期地震儀陣列…………………………… 41
3.2 氣象局地震目錄資料…………………………………...………… 42
3.3 近震區強震資料………………………………………..…….…… 43
3.4 一維速度模型……………………………………..………..……… 44
第四章 利用觀測網內事件驗證本研究方法之可行性……..…..……… 48
4.1 2008年6月1日16:59,ML=5.8……………………….…..…… 49
4.2 1995年6月25日06:59,ML=6.5…………………….………… 51
4.3 結果討論……………………………………………….…..……… 52
第五章 台灣地震觀測網外較大規模地震事件之分析………………… 68
5.1 台灣東北部外海地震事件………………………………………… 68
5.1-1 無定位結果之地震事件…………………………………………… 69
5.1-2 規模最大之地震事件?2004/10/15 04:08,ML=7.1……………… 70
5.1-3 最深之地震事件?2001/11/24 05:46,原定位深度274公里……. 71
5.1-4 最遠離台灣觀測網之地震事件?2000/01/28 16:39……………... 72
5.1-5 分析結果與討論…………………………………………………… 73
5.2 2006年台灣南部外海屏東地震序列…………………………..… 75
5.2-1 屏東地震序列資料選用…………………………………………… 76
5.2-2 觀測記錄與分析…………………………………………………… 76
5.2-3 分析結果與討論…………………………………………………… 80
第六章 結論與建議……………………………………………………..… 110
6.1 結論……………………………………………………………...… 113
6.2 建議………………………………………………………………… 115
參考文獻…………………………………………………………………….… 119
參考文獻 Alekseev, A. S. and Mikhailenko, B. G., The solution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite difference models, J. Geophys., 48, 161-172, 1980.
Aki, K. and Richards, P. G., Quantitative seismology theory and methods, W. H. Freeman and Company, San Francisco, 1980.
Bolt, B. A., Seismic strong motion synthetics, Academic Press, Inc., p64, 1987.
Bouchon, M., A simple method to calculate Green’s functions for elastic layered media, Bull. Seism. Soc. Am., 71, 959-971, 1981.
Corbishley, D. J., Structure under seismic arrays, Geophys. J. Int., 21, 415–425. 1970.
Davies, D., Kelly, E. J., and Filson, J. R., Vespa process for analysis of seismic signals, Nature Phys. Sci., 232, 8-13, 1971.
Davies, D., Seismology with large arrays, Rep. Prog. Phys., 36, 1233-1283, 1973
Dewey, J. W., Seismicity and tectonics of western Venezuela, Bull. Seism. Soc. Am., 62, 1711-1751, 1972.
Douglas, A., Joint epicenter determination, Nature, 215, 47-48, 1967.
Dziewonski, A. M. and Anderson, D. L., Preliminary reference earth model, Phys. Earth Planet. Inter., 25, 297-356, 1981.
Engdahl, E. R. and Gunst, R. H., Use of a high-speed computer for the preliminary determination of earthquake hypocenters, Bull. Seism. Soc. Am., 56, 325–336, 1966.
Engdahl, E. R., Hilst, R. D. van der and Buland, R. P., Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seism. Soc. Am., 88, 722–743, 1998.
Engdahl, E. R., Application of an improved algorithm to high precision relocation of ISC test events, Physics of the Earth and Planetary Interiors, 158, 14–18, 2006.
Frohlich Cliff, Deep earthquakes, Chapter 4, Cambridge University Press, 2006
Helmberger, D. V. and Burdick, L. J., Synthetic seismograms, Ann. Rev. Earth Planet. Sci., 417-442, 1979.
Helmberger, D. V., The crust-mantle transition in the Bering Sea, Bull. Seism. Soc. Am., 58, 179-214, 1968.
Helmberger, D. V., Generalized ray theory for shear dislocations, Bull. Seism. Soc. Am., 64, 45-64, 1974.
Herrmann, R. B., SH-wave generation by dislocation source – A numerical study, Bull. Seism. Soc. Am., 69, 1-15, 1979.
Husebye, E. S. and Ruud, B. O., Array seismology: past, present and future developments, in Observatory Seismology, Chapter 8, J.J. Litehiser(ed.) Berkley University Press, California, 1989.
Hwang, L. J. and Clayton, R. W., A station catalog of ISC arrivals: Weismic station histories and station residual, U.S. Geol. Surv. Open File Rep., 91-295, 1991.
Ingate, S. F., Husebye, E. S. and Christoffersson, A., Regional arrays and optimum processing schemes, Bull. Seism. Soc. Am., 75, 1155-1177, 1985.
Jeffreys, H. and Bullen, K. E., Seismological tables, British Association for the Advancement of Science, London, 1940.
Kennett, B. L. N., and Engdahl, E. R., Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465, 1991.
Kennett, B. L. N., IASPEI 1991 seismological tabels, Research School of Earth Sciences, Australian National University, 1991.
Kennett B. L. N., Engdahl, E. R. and Buland R., Constraints on seismic velocities in the earth from travel times, Geophys. J. Int, 122, 108-124, 1995.
Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., Huang, B. S., Yeh, Y. and Shen, P., Three-dimensional Vp and Vs structural models associated with the active subduction and collision tectonics in the Taiwan region, Geophysical Journal International, 162, 204-220, 2005.
Langston, C. A. and Helmberger, D. V., A procedure for modeling shallow dislocation sources, Geophys. J. R. Astr. Soc., 117-130, 1975.
Lee, S. J., Liang, W. T. and Huang, B. S., Source mechanisms and rupture processes of the 26 December 2006 Pingtung earthquake doublet as determined from the regional seismic records, Terr. Atmos. Ocean. Sci., 19(6), 555-565, 2008.
Liao, Y. C., Hsu, S. K., Chang, C. H., Doo, W. B. and Ho, M. Y., Seismic tomography off SW Taiwan: A joint inversion from OBS and onshore data of 2006 Pingtung aftershocks, Terr. Atmos. Ocean. Sci., 19(6), 729-741, 2008.
Ma, K.-F., Wang, J.-H. and Zhao, D., Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85-105, 1996.
McFadden, P. L., Drummond, B. J. and Kravis, S., The Nth-root stack: Theory, applications, and examples, Geophysics, 51, 1879-1892, 1986.
Murphy, J. R. and Barker, B. W., Improved focal-depth determination through automated identification of the seismic depth phase pP and sP, Bull. Seism. Soc. Am., 96, 1213-1229, 2006.
Olson, A. H. and Aspel, R. J., Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake, Bull. Seism. Soc. Am., 72, 1969-2001, 1982.
Pho, H. T. and Behe, L., Extended distances and angles of incidence of P waves, Bull. Seism. Soc. Am., 62, 885-902, 1972.
Rau, R.-J. and Wu, Francis T., Tomographic imaging of lithospheric structure under Taiwan, Earth and Planetary Science Letters, 133, 517-532, 1995.
Rost, S., and Thomas, C., Array seismology: Methods and applications, Rev. Geophys., 40(3), 1008, 2002.
Rost, S., and Garnero, E. J., Array Seismology Advances Research Into Earth's Interior, Eos, 85(32), 2004.
Stein S. and Wysession M., An Introduction to seismology, earthquakes and earth structure, Chapter 4, Blackwell Publishing Ltd., 2003.
Stein S. and Wiens, D. A., Depth determination for shallow teleseismic earthquakes: Methods and results, Reviews of Geophysics, 24(4), 806-832, 1986.
Shin, T. C., Progress summary of the Taiwan strong motion instrumentation program, Symposium on Taiwan Strong Motion Instrumentation Program, 1-10, 1993.
Tsai, Y. B., Feng, C. C., Chiu, J. M., and Liaw, H. B., Correlation between microearthquakes and geological faults in the Hsintien-Ilan area, Petrol. Geol. Taiwan, 12, 149-167, 1975.
Vidale, J. E., and Benz, H., Upper-namtle seismic discontinuities and the thermal structure of subduction zones, Nature, 356, 678-683, 1992.
Waldhauser, F. and Ellsworth, W. L., A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California, Bull. Seism. Soc. Am., 90, 1353-1368, 2000.
Wang, C. Y. and Herrmann, R. B., A numerical study of P-, SV- and SH-wave generation in a plane layered medium, Bull. Seism. Soc. Am., 70, 1015-1036, 1980.
Wang, Z. and Zhao, D., Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan using P-wave, S-wave and sP depth-phase data, Physics of the Earth and Planetary Interiors, 152, 144-162, 2005.
Warren, L. M. and Shearer, P. M., Using the effects of depth phases on P-wave spectra to determine earthquake depths, Bull. Seism. Soc. Am., 95, 173-184, 2005.
Weichert, D. H. and Whitham, K., Calibration of the Yellowknife seismic array with first zone explosions. Geophys. J. R. Astro. Soc., 18, 461–476, 1969.
Wu, T. R., Chen, P. F., Tsai, W. T. and Chen, G. Y., Numerical study on tsunamis excited by 2006 Pingtung earthquake doublet, Terr. Atmos. Ocean. Sci., 19(6), 705-715, 2008.
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J., Bruce H., Chen, Y. G., Sieh, K. and Avouac, J. P., Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, 2007.
Yeh, Y. H. and Tsai, Y. B., Crustal structure of central Taiwan from inversion of P-wave arrival times, Bull. Inst. Earth Sci., Aca. Sinica, 1, 82-102, 1981.
Yeh, Y. H., Lin, C. H. and Roecker, S. W., A study of upper crustal structures beneath northeastern Taiwan: Possible evidence of the western extension of Okinawa trough, Proc. Geol. Soc. China, 32, 139-156, 1989.
Zhu, L. and Rivera, L. A., A note on the dynamic and static displacements from a point source in multi-layered media, Geophys. J. Int., 148, 619-627, 2002.
林哲民,利用接收函數法推估蘭陽平原淺層速度構造,國立中央大學地球物理研究所碩士論文,159頁,2003。
何春蓀,台灣地質概論,台灣地質圖說明書,經濟部中央地質調查所,台灣台北,164頁,1986。
何美儀,台灣西部地區三維速度構造,國立中央大學地球物理研究所碩士論文,台灣中壢,1994。
陳燕玲,台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文,台灣中壢,1995。
陳燕玲&辛在勤,台灣地區三維速度構造,氣象學報,第42卷,第2期,台灣台北,135-169,1998。
張建興,高密度地震資料分析及其用於台灣中部及東部孕震構造之研究,國立中央大學地球物理研究所博士論文,台灣中壢,156頁,2004。
葉義雄,由地震與重力資料推研台灣北部地殼及上部地函三維構造,國立中央大學地球物理研究所博士論文,台灣中壢,1986。
指導教授 溫國樑、黃柏壽
(Kou-Liang Wen、Bor-Shouh Huang)
審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明