博碩士論文 966202018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.119.159.150
姓名 鐘意晴(Yi-Ching Chung)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 區域性山崩潛感分析方法探討-以石門水庫集水區為例
(Probe into the Regional Landslide Susceptibility Analysis-a case study in the Shimen Reservoir Catchment Area)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 集集地震誘發之山崩
★ 台北盆地松山層土壤性質之空間分析★ 新店溪之地形研究
★ 運用類神經網路進行隧道岩體分類★ 大肚溪流域河階地形研究
★ 台南台地暨鄰近地區之台南層及其構造運動★ 台灣東北部地區隱沒帶地震強地動衰減式之研究
★ 台灣地區地震危害度的不確定性分析與參數拆解★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 使用震源機制逆推台灣地區應力分區狀況★ 921集集地震造成之地表變形模式
★ 機率式地震誘發山崩危害度分析–以國姓地區為例★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用地調所集水區地質調查及山崩土石流調查與發生潛勢評估計畫在石門水庫上游集水區的基本資料,改進計畫中之潛感模式,整理艾利事件不同時間的雨量資料,利用不同雨量因子的選取,評估分析模型可能改善之空間。選用之潛在因子包括:岩性、坡度、艾利事件NDVI前期、坡度粗糙度、切向曲率、全坡高、相對坡高、溼度指數、斷層距。促崩因子選用艾利事件最大時雨量與艾利事件總雨量。山崩目錄由艾利事件前後及馬莎事件前後之SPOT衛星影像判釋崩塌地位置,並輔以像片基本圖、地形圖及野外查核作檢核, 建立艾利事件誘發山崩目錄來進行分析、馬莎事件誘發山崩目錄則用於模型驗證。本研究以羅吉斯迴歸為主要分析方法建立潛感模型並藉由不同額外組資料的加入擴大促崩因子的值域並希望能提高促崩因子之權重,使模型的預測效果更佳。
除了使用羅吉斯迴歸外,研究中亦利用判別分析及類神經網路方法對同一筆資料進行分析。分析結果顯示,三種方法之成功率曲線的AUC值分別為0.8579、0.8257及0.8771,皆有相當不錯之結果。利用馬莎颱風事件誘發山崩資料驗證結果,三種方法得到之AUC值分別為0.7867、0.7264及0.7726,驗證結果亦令人滿意。雖然類神經網路方法在建模型時獲得最高之AUC,但在驗證時卻不是最高;判別分析方法在建模型時AUC最低,驗證時也是最低。羅吉斯迴歸方法在建模型時不是最好,但驗證時卻為最高,故羅吉斯迴歸方法在建立區域性山崩預測模型時最為穩定。
摘要(英) This study uses data set from the “Geological Investigation, Landslide-Debris Flow Investigation and their Susceptibility Evaluation on Watershed” project of the Central Geological Survey, Taiwan (CGS), and aims to improve the susceptibility model developed in the project, by using different rainfall factors and sampling schemes. All the causative factors used in the project are selected in this study; including lithology, NDVI before Aere event, slope roughness, tangential curvature, total slope height, relative slope height, wetness index and fault distance. The final selection of trigger factors is maximum rainfall intensity and total rainfall of the Aere event. Landslide inventories interpreted from SOPT images before and after Aere typhoon event and those of the Matsa typhoon event, were checked by examining rectified aerial photographs, topographic maps, and in the field, so as to establish the event-based landslide inventories. The Aere inventory is used for establishment of susceptibility model and the Matsa inventory for validation. We use different sampling schemes in the study and choose logistic regression as the main analytical method to establish the susceptibility model. We wish to select a set of sample that can expand the range of rainfall values and also raise the weights of the trigger factors. An extra data set from landslide group is selected and is put into the non-landslide group try setting the rainfall value to critical rainfall.
Besides the use of logistic regression for establish susceptibility model, we also adopt discriminant analysis and fuzzy neural network in the study. The results show that AUCs of the success rate curves for logistic regression, discriminant analysis, and fuzzy neural network are 0.8579, 0.8257 and 0.8771, respectively; all show good performance. The results are validated by the data set from of the Matsa typhoon event. The results of validation show that AUCs of the prediction rate curves are 0.7867, 0.7264 and 0.7726, respectively; it is also satisfactory. Although the fuzzy neural network has the highest AUC in establishing model, it is not the highest in validation; this phenomenon may be a kind of over-training. The discriminant analysis obtained the lowest AUC in establishing model and validation. The result of logistic regression is not the best one in establishing the model, but it is the best in validation. Therefore, the logistic regression is the most effective and stable method in establishing the regional landslide prediction model.
關鍵字(中) ★ 山崩
★ 潛感分析
★ 羅吉斯迴歸
★ 預測率曲線
關鍵字(英) ★ susceptibility analysis
★ logistic regression
★ prediction rate curve
★ Landslide
論文目次 目 錄
頁次
中文摘要…………………………………………………………………i
英文摘要 …………………………………………………………… iii
致謝 …………………………………………………………………vi
目錄 …………………………………………………………………vii
圖目 …………………………………………………………………xi
表目 …………………………………………………………………xiv
第一章 緒論 ………………………………………………………1
1.1 研究動機與目的……………………………………………………1
1.2 文獻回顧……………………………………………………………2
1.2.1 山崩潛感分析研究…………………………………………2
1.2.2 羅吉斯迴歸應用於山崩潛感分析…………………………5
1.2.3 判別分析應用於山崩潛感分析……………………………6
1.2.4 類神經網路應用於山崩潛感分析…………………………7
1.2.5 定值法應用於山崩潛感分析 …………………………8
1.3 研究架構與流程……………………………………………………9
第二章 研究方法…………………………………………………12
2.1 羅吉斯迴歸 ……………………………………………………12
2.1.1羅吉斯迴歸之理論 ………………………………………12
2.1.2羅吉斯迴歸之應用 ………………………………………16
2.2 判別分析 ………………………………………………………17
2.2.1判別分析之理論 …………………………………………17
2.2.2判別分析之應用 …………………………………………20
2.3 類神經網路 ……………………………………………………21
2.3.1 類神經網路之理論 ………………………………………21
2.3.2 倒傳遞類神經網路 ………………………………………22
2.3.2.1 學習過程 …………………………………………23
2.3.2.2 回想過程 ……………………………………24
2.3.2.3 誤差函數 ……………………………………25
2.3.3 模糊理論……………………………………………26
2.3.3.1 模糊隸屬函數與模糊化……………………27
2.3.2.2 解模糊 ……………………………………27
2.3.2.3 灰色分析與灰色聚類 ………………………28
2.3.4 模糊類神經網路……………………………………29
2.4 工作流程 …………………………………………………30
2.5 驗證方法 ……………………………………………………30
2.5.1 分類誤差矩陣表 ………………………………………………30
2.5.2 ROC曲線 …………………………………………31
2.5.3 成功率曲線與預測率曲線 ……………………………………31
第三章 研究區域概述 …………………………………………37
3.1 研究區地理位置與地形概述 ……………………………………37
3.2 研究區氣候與水文概述 …………………………………………38
3.3 研究區地層概述 …………………………………………………38
3.4 研究區構造概述 …………………………………………………42
3.4.1 研究區斷層構造 …………………………………………42
3.4.2 研究區褶皺構造 …………………………………………43
3.5 研究區土地利用現況 ……………………………………44
第四章 資料蒐集與處理 ……………………………………………51
4.1 資料蒐集 …………………………………………………51
4.1.1 SPOT衛星影像 ……………………………………52
4.1.2 山崩判釋及檢核……………………………………53
4.1.3 雨量資料檢核與處理………………………………56
4.1.4 雨量空間分布推估…………………………………57
4.1.5 重現期距雨量分布推估……………………………58
4.1.6 資料整合處理………………………………………59
4.2 山崩因子處理 ……………………………………………59
4.2.1潛在因子 ……………………………………………60
4.2.2促崩因子 ……………………………………………65
4.3 因子篩選 …………………………………………………66
4.3.1 山崩與非山崩次數分佈圖…………………………66
4.3.2 崩壞比圖……………………………………………66
4.3.3 判別子………………………………………………67
4.3.4 成功率曲線…………………………………………67
4.3.5 P-P機率圖 ……………………………………………………67
4.3.6 相關係數 ………………………………………………………67
4.3.7 山崩因子選取 …………………………………………………67
4.3.8 促崩因子選取 …………………………………………………69
第五章 山崩潛感分析 ………………………………………………92
5.1 分析樣品選取 ……………………………………………92
   5.2 不同樣本之羅吉斯迴歸分析成果比較 …………………94
5.3 羅吉斯迴歸結果 …………………………………………95
5.4 判別分析結果 ……………………………………………97
5.5 類神經網路分析結果 ……………………………………98
5.6 各分析方法之分析成果比較 ……………………………98
第六章 成果驗證 ……………………………………………………112
6.1 概說………………………………………………………………112
6.2 羅吉斯迴歸成果驗證……………………………………………112
6.3 判別分析成果驗證………………………………………………112
6.4 類神經網路成果驗證……………………………………………113
6.5 各分析方法之驗證成果比較……………………………………113
第七章 討論 …………………………………………………………118
7.1 不同雨量資料選取之成果比較 …………………………118
7.2 不同選樣資料成果進行羅吉斯迴歸分析之比較 ……………120
7.3 山崩預測結果與實際山崩分布比較 ……………………121
7.4 研究成果與地調所計畫成果之比較……………………122
7.5 統計方法與水文模式方法比較 ……………………123
第八章 結論與建議 …………………………………………………136
8.1 結論 ……………………………………………………………136
8.2 建議 …………………………………………………………137
參考文獻 ……………………………………………………………139
附錄A 艾利事件與馬莎事件各雨量推估結果……………………153
附錄B 艾利事件與馬莎事件選用之促崩因子……………………166
參考文獻 Agresti, A., Categorical data analysis (2nd ed.), New York: John Wiley, 710pp. 2002.
Atkinson, P. M., Massari, R., Generalized linear modelling of susceptibility to landsliding in the central Apennines, Italy, Computers & Geosciences, 24, 373-385., 1998.
Au, S. W.C., Rainfall and slope failure in Hong Kong, Engineering Geology, 36, 141-147., 1993.
Ayalew, L., Yamagishi, H., The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65, 15-31., 2005.
Borga, M., Fontana, G. D., Ros, D. D., Marchi, L., Shallow landslide hazard assessment using a physically based model and digital elevation data. Environmental Geology, 35(2-3), 81-88., 1998.
Brabb, E. E., Pampeyan, E. H., Bonilla, M.G., Landslide susceptibility in San Mateo County, California, U.S. Geol. Surv., Misc. Field Studies Map, MF-360., 1972.
Brabb, E. E., Innovative approaches to landslide hazard and risk mapping, in Proc., Fourth International Symposium on Landslides, Canadian Geotechnical Society, Toronto, Canada, 1, 307-324., 1984.
Brenning, A., Spatial prediction models for landslide hazards: review, comparison and evaluation, Natural Hazards and Earth System Science, 5(6), 853-862., 2005.
Burton, A., Bathurst, J. C., Physically based modeling of shallow landslide sediment yield at a catchment scale : Environmental Geology, 35, 89-99., 1998.
Caine, N., Rainfall intensity-duration control of shallow landslides and debris flows, Geograf, Ann, 62A, 23-27., 1980.
Cannon, S. H., Ellen, S. D., Rainfall conditions for abundant debris avalanches San Francisco Bay region, California, California Geology, 38(12), 267-272., 1985.
Cannon, S.H., Gartner, J.E., Parrett, C., Parise, M., Wildfire-related 76 debris flow generation through episodic progressive sediment bulking processes, western U.S.A., in Ricjenmann, D. and Chen, C.L., eds., Debris-flow hazards mitigation - Mechanics, prediction, and assessment: Proceedings of the Third International Conference on Debris-Flow Hazards Mitigation, 71-82., 2003.
Cannon, S.H., Gartner, J.E., Rupert, M.G., Michael, J.A., Emergency assessment of debris flow hazard from basins burned by the Cedar and Paradise fires of 2003, southern California: U.S. Geological Survey Open File Report 2004-1011., 2004.
Carrara, A., and Merenda, L., Methodology for an inventory of slope instability events in Calabria (Southern Italy), Geologia Applicata e Idrogeologica, 9, 237-255., 1974.
Carrara, A., Multivariate models for landslide hazard evaluation, Mathmatical Geology, 15(3), 403-427., 1983.
Carrara, A., Landslide hazard mapping by statistical methods: A “black box”approach. In Workshop on Natural Disasters in European Mediterranean Countries, Perugia, Italy, Consiglio Nazionale delle Ricerche, Perugia, 205-224., 1988.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., Geographical information systems and multivariate models in landslide hazard evaluation. in ALPS 90 Alpine Landslide Practial Seminar, Sixth International Conference and Field Workshop on Landslides, Aug. 31-Sept.12, Milan, Italy, Universita degli Studi de Milano, 17-28., 1990.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., GIS techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms, 16(5), 427-445., 1991.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Uncertainty in assessing landslide hazard and risk, ITC Journal, 2, 172-183., 1992.
Chang, K. T., Chiang, S. H., Hsu, M. L., Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, 89, 335-347., 2007a.
Chang, K. T., Chiang, S. H., Lei, F., Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions, Earth Surface Processes and Landforms, 1002, 11pp., 2007b.
Chung, C. F., Fabbri, A. G., Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering & Remote Seneing, 65(12), 1389-1399., 1999.
Chung, C. F., Fabbri, A. G., Validation of spatial prediction models for landslide hazard mapping, Natural Hazards 30, 451-472., 2003.
Corominas, J., Moya, J., Lloret, A., Gili, J. A., Angeli, M. G., Pasuto, A., Silvano, S., Measurement of landslide displacements using a wireextensometer, Engineering Geology, 55, 149-166., 2001.
Dai, F. C. Lee, C. F. Li, J. Xu, Z. W., Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong, Environmental Geology, 40, 381-391., 2001.
Dai, F. C., Lee, C. F., Frequency-volume relation and prediction of rainfall-induced landslides, Engineering Geology, 59, 253-266., 2001.
Dai, F. C. Lee, C. F., Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213-228., 2002.
Dai, F. C. Lee, C. F., A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression, Earth Surface Processes and Landforms, 28, 527-545., 2003.
Dai, F. C. Lee, C. F. Tham, L. G. Ng, K.C. Shum, W. L. Logistic regression modelling of storm-induced shallow landsliding in time and space on natural terrain of Lantau Island, Hong Kong, Bulletin of Engineering Geology and the Environment, 63, 315-327., 2004.
Dietrich, W. E., Reiss R., Hsu M. L., Montgomery D. R., A process-based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrological Processes, 9, 383-400., 1995.
Ercanoglu, M., Gokceoglu, C., Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environmental Geology, 41, 720-730., 2002.
Ercanoglu, M., Gokceoglu, C., Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey), Engineering Geology, 75, 229-250., 2004.
Feinberg, S., The analysis of cross-classified categorical data (2nd ed.), Cambridge, MA: MIT Press, 198pp., 1985.
Gao, J., Lo, C. P., GIS modeling of influence of topography and morphology on landslide occurrence in Nelson County, Virginia: GIS/LIS 91 Proceedings, 1, 954-963., 1991.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., Landslide hazard evaluation: a review of current techniques and their application in a multi-Scale study, central Italy, Geomorphology, 31, 181-216., 1999.
Govi, M., Mortara, G., Sorzara, P.F., Eventi idrologici e frane, Geological Apply Idrogeology, XX (II), 359-375., 1985.
Hansen, A., Landslide hazard analysis, in Slope Instability (Brunsden, D. and Prior, D.B. eds.), John Wiley and Sons, New York, 523-602., 1984.
Harp, E.L., Jibson, R. W., Inventory of landslides triggered by the 1994 Northridge, California earthquake. In:US Geological Survey Open-File Report 17, 95-213., 1995.
Harp, E. L., Jibson, R. W., Landslides triggered by the 1994 Northridge, California earthquake, Bulletin of the Seismological Society America, 86, 1B, S319-S332., 1996.
Hearn, G. J. Landslide and erosion hazard mapping at Ok Tedi Cooper Mine, The Quarterly Journal of Engineering Geology, 28, 47-60., 1995.
Huang, C. M., Chung, Y. C., Lee, C. T., Landslide susceptibility assessment of the Tahang river catchment in northern Taiwan, American Geophysical Union (AGU), NG23A-1118. 2008.
Ives, J. D., Bovis, M. J., Natural hazards maps for land-use planning, San Juan Mountains, Colorado, U.S.A, Arctic and Alpine Research, 10(2), 185-212. 1978.
Ives, J. D., Messerli, B. Mountain hazards mapping in Nepal: introduction to an applied mountain research project, Mountain Research and Development, 1(3-4), 223-230. 1981.
Jibson, R. W. Keefer, D. K., Statistical analysis of factors affecting landslide distribution in the New Madrid seismic zone, Tennessee and Kentucky, Engineering Geology, 27, 509-542., 1989.
Jibson, R. W., Harp, E. L., Michael, J. A., A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California Area, USGS Open-File Rep, 98-113., 1998.
Jibson, R. W., Harp, E. L., Michael, J. A., A method for producing digital probabilistic seismic landslide hazard maps, Engineering Geology, 58, 271-289., 2000.
Johnson, K. A., Sitar, N., Hydrologic conditions leading to debris- flows initiation, Canadian Geotechnical Journal, 27, 789-801., 1990.
Jones, F. O., Embody, D. R., Peterson, W. C. Landslides along the Columbia River valley, northeastern Washington, Professional Paper 367, U.S. Geological Survey, Reston, Va, 98pp., 1961.
Kanungo, D. P., Arora, M. K., Sarkar, S., Gupta, R. P., A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas, Engineering Geology, 85, 347-366., 2006.
Keefer, D. K., Statistical analysis of an earthquake-induced landslide distribution - the 1989 Loma Prieta, California event, Engineering Geology, 58, 231-249., 2000.
Kienholz, H., Maps of geomorphology and natural hazards of Grindelwald, Switzerland, scale 1:10,000, Arctic and Alpine Research, 10, 169-184., 1978.
Kobashi, S., Suzuki, M. Hazard index for the judgement of slope stability in the Rokko mountain region, In Proc., Interpraevent 1988, Graz, Austria, 1, 223-233., 1988.
Kobashi, S., Suzuki, M., Hazard index for the judgement of slope stability in the Rokko mountain region, In Proc, 1, 223-233. 1988
Koukis, G., Ziourkas, C., Slope instability phenomena in Greece: A statistical analysis, Bulletin of the International Association of Engineering Geology, 43, 47-60., 1991.
Lambe, T. W., Whitman, R. V., Soil Mechanics, Wiley, New York, 553pp., 1979.
Larsen, M.C., Simon, A., A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico, Geografiska Annaler, 75A, 1-2, 13-23., 1993.
Lee, S., Min, K., Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental Geology, 40, 1095-1113., 2001.
Lee, C. T., GIS Application in Landslide Hazard Analysis, Pacific Neighborhood Consortium (PNC) 2008 Annual Meeting program., 2008.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., Statistical approach to earthquake-induced landslide susceptibility, Engineering Geology, 100(1-2), 43-58., 2008a.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., Statistical approach to storm event-induced landslide susceptibility, Natural Hazard and Earth System Sciences, 8, 941-960., 2008b.
Lee, C. T., Huang, C. M., Neuro-fuzzy-based landslide susceptibility analysis - an example from Central Western Taiwan, Geophysical Research Abstracts, 9, 06849., 2007.
Lillesand, T. M., Kiefer, R. W., Remote sensing and image interpretation, Wiley & Sons, New York, 724pp. 2000.
Long, J. S., Regression models for categorical and limited dependent variables, Thousand Oaks, California: Sage Publications, 297pp. 1997.
Lumb, P., Slope failure in Hong Kong, Quarterly Journal of Engineering Geology, 8, 31–65., 1975.
Malgot, J., Mahr, T., Engineering geological mapping of the west Carpathian landslide areas, Bulletin of the International Association of Engineering Geology, 19, 113-121., 1979.
Mark R. K., Ellen S. D., Statistical and simulation models for mapping debris-flow hazard, Geographical Information Systems in Assessing Natural Hazards, 93-106., 1995.
Meneroud, J. P., Calvino, A., Carte ZERMOS, zones exposees a des Risques lies aux Mouvements du Sol et du Sous-Sol a 1:25,000, Region de la Moyenne Vesubie (Alpes-Maritimes), Bureau de Recherches Geologiqueset et Minieres, Orleans, France, 11pp., 1976.
Miles, S. B., Keefer, D. K., Comprehensive areal model of earthquake-induced landslides: technical specification and user guide. U.S. Geological Survey Open-File Report 2007-1072, 69pp., 2007.
Neuland, H., A prediction model of landslips, Catena, 3, 215-230., 1976.
Newmark, N. M., Effects of earthquakes on dams and embankments, Geotechnique, 15, 139-160., 1965.
Ohlmacher, G. C., Davis, J. C., Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA, Engineering Geology, 69, 331-343., 2003.
Pearce, A. J., O’loughlin, C. L., Landsliding during a M7.7 earthquake:influence of geology and topography:Geology, 13, 855-858., 1985.
Premchitt, J., Brand, E. W., Chen, P. Y. M., Rain-induced landslidesin Hong Kong, Asia Engineer, Journal of the Hong Kong Institution of Engineers June, 43-51., 1994.
Polemic, M., Sdao, F., The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy), Engineering Geology, 53, 297-309., 1999.
Rupke, J., Cammeraat, E., Seijmonsbergen, A. C., van Westen, C. J., Engineering geomorphology of the Widentobel catchment, Appenzell and Sankt Gallen, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of slope stability, Engineering Geology, 26, 33-68., 1988.
Salciarini, D., Godt, J.W., Savage, W. Z., Conversini, P., Baum, R. L., Michael, J. A., Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3, 181-194., 2006.
Sidle, R. C., Pearce, A. J., O'Loughlin, C. L., Hillslope stability and land use, Water Resources Monograph, 11, 140pp., 1985.
Stevenson, P.C., An empirical method for the evaluation of relative landslide risk, Bulletin of the international association of engineering geology, 16, 69-72., 1977.
Süzen, M. L., Doyuran, V., A comparison of the GIS based landslide susceptibility assesment methods: multivariate versus bivariate, Environmental Geology, 45, 665-679., 2004a.
Süzen, M. L., Doyuran, V., Data driven bivariate landslide susceptibility assessment using geographical information system, Engineering Geology, 71, 303-321., 2004b.
Swets, J. A., Measuring the accuracy of diagnostic systems, Science, 240(4857), 1285-1293., 1988.
Uromeihy, A., Mahdavifar, M.R., Landslide hazard zonation of the Khorshrostam area, Iran, Bulletin of Engineering Geology and Environment, 58, 207-213., 2000.
van Westen, C.J., Medium scale landslide hazard analysis using a PC based GIS: A case study from Chinchina, Colombia. In Proc., ler Simposio Internacional sobre Sensores Remotes Sistemas de Informacion Geografica (SIG) para el Estudio de Riesgos Naturales, Bogota, Colombia(J.B. Alzate, ed.), Instituto Geografico Agustin Codazzi, Bogota, 2, 20pp., 1992.
van Westen, C. J., van Asch, T. W. J., Soeters, R., Landslide hazard and risk zonation–why is it still so difficult, Bulletin of Engineering Geology and Environment, 65, 167-184., 2006.
Varnes, D. J., Landslide hazard zonation: a review of principles and practice, UNESCO Press, Praris, 63pp., 1984.
Wilson, J. P., Gallant, J. C., Terrain analysis, John Wiley & Sons, Inc., 51-58., 2000.
Wieczorek, G. F., Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. In Debris Flows/ Avalanches: Process, Recognition, and Mitigation, Costa JE, Wieczorek GF (eds), Reviews in Engineering Geology, Geological Society of America, 93-104., 1987.
Yin K. L., Yan, T. Z. Statistical prediction models for slope instability of metamorphosed rocks, Proceedings of the International Symposium on Landslides, 5, 1269-1272., 1988.
內政部營建署,石門水庫集水區土地利用整體規劃報告,131頁,2005。
王淑慧,類神經網路應用於道路邊坡落石坍方預測之可行性研究-以阿里山公路為例,國立台北科技大學材料及資源工程研究所碩士論文,151頁,2000。
王鑫,地景法邊坡穩定性的分析研究,工程環境會刊,第2期,73-91,1981。
台灣省政府水利處,台灣省水利統計年報,1998
朱聖心,應用地理資訊系統製作地震及降雨所引致之山崩危險圖,國立臺灣大學土木工程研究所碩士論文,169頁,2001。
何春蓀,台灣地質概論-台灣地質圖說明書,第二版,經濟部中央地質調查所出版,163頁,1986。
吳振威,公路邊坡保護工法之選擇模式研究-以南二高白河以南路段為例,國立成功大學資源工程研究所碩士論文,144頁,2003。
吳漢雄,鄧聚龍,溫坤禮,灰色分析入門,高立圖書有限公司,1-206,1996。
李錫堤,潘國樑,林銘郎,山崩調查與危險度評估-山崩潛感分析之研究(1/3),經濟部中央地質調查所報告,第92-11號,154頁,2003。
李錫堤,潘國樑,林銘郎,山崩調查與危險度評估-山崩潛感分析之研究(2/3),經濟部中央地質調查所報告,第93-17號,264頁,2004。
李錫堤,潘國樑,林銘郎,山崩調查與危險度評估-山崩潛感分析之研究(3/3),經濟部中央地質調查所報告,第94-18號,268頁,2005。
李錫堤,費立沅,李錦發,林銘郎,董家鈞,張瓊文,石門水庫集水區的山崩與土石流潛感分析,第六屆海峽兩岸山地災害與環境保育學術研討會論文光碟,1-10,2008。
李馨慈,應用累積位移法於地震引起之山崩潛勢分析,國立成功大學資源工程學系碩士論文,103頁,2004。
林中興,山坡穩定性評估之因子分析及地理資訊系統之應用,國立中央大學應用地質研究所碩士論文,87,1994。
林昭遠、吳瑞鵬、林文賜,921震災塌地植生復育監測與評估,中華水土保持學報,32-1,59-66,2001。
林彥享,以類神經網路進行地震誘發山崩之潛感分析,國立中央大學應用地質研究所碩士論文,81頁,2003。
林彥享,以類神經網路進行地震誘發山崩之潛感分析,國立中央大學應用地質研究所碩士論文,81頁,2003。
林淑媛,地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研究所碩士論文,141頁,2003。
林書毅,區域性山坡穩定評估方法探討-以林口台地為例,國立中央大學應用地質研究所碩士論文,92頁,1999。
邱紹維,灰關聯分析於水庫水質縱合評判之研究-以翡翠與石門水庫為例,國立中央大學應用地質研究所碩士論文,136頁,2003。
許琦,模糊集理論在山崩潛感性分析之應用,成功大學土木工程研究所,第三屆大地工程學術研究討論會宣讀論文,23-33,1989。
許煜煌,以不安定指數法進行地震引致坡地破壞模式分析,台灣大學土木工程學研究所碩士論文,153頁,2002。
陳志豪,變質岩公路邊坡之破壞潛勢分析-以南橫公路埡口至新武段為例,國立成功大學資源工程研究所碩士論文,124頁,2002。
陳佳慧,捷運接駁公車營運績效評估-以淡水線為例,國立台灣大學土木工程學研究所碩士論文,171頁,2000。
陳振華,潘國樑,台北市山坡地住宅區環境地質調查研究,工研院能源與礦業研究所報告,第229號,385頁,1985。
陳順宇,多變量分析三版,台北,華泰書局,2004。
陳崇華,台十一線海岸公路邊坡崩塌災害分析,國立東華大學自然資源管理研究所碩士論文,90頁,2003。
陳嬑璇,溪頭地區山崩潛感圖製作研究,國立臺灣大學土木工程研究所碩士論文,141頁,2002。
張石角,都市山坡地利用潛力調查與製圖-方法論與實例,中華水土保持學報,第11卷,第1期,13-24,1980。
張弼超,運用羅吉斯迴歸法進行山崩潛感分析-以國姓地區為例,國立中央大學應用地質研究所碩士論文,134頁,2005。
張舜孔,類神經網路應用在阿里山公路邊坡破壞因子之分析研究,國立成功大學土木工程研究所碩士論文,92頁,2003。
莊緯璉 ,運用判別分析進行山崩潛感分析之研究-以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文,178頁,2005。
黃志暉,臺東地區主要競爭醫院忠誠病人之區辨研究,高雄醫學大學公共衛生學研究所碩士在職專班碩士論文,153頁,2004。
黃俊英,多變量分析,第五版,台北,中國經濟企業研究所,1995。
黃春銘,使用模糊類神經網路進行山崩潛感分析-以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文,125頁,2005。
葉怡成,類神經網路模式應用與實作,儒林出版社,2003。
楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂,模糊控制理論與技術,全華科技圖書股份有限公司,2002。
楊智堯,類神經網路於邊坡破壞潛能分析之應用研究,國立成功大學土木工程研究所碩士論文,110頁,1999。
趙建剛,失智症預測模式之研究,義守大學管理科學研究所碩士論文,127頁,2004。
經濟部中央地質調查所,臺灣坡地社區工程地質調查與探勘報告-總論,經濟部中央地質調查所,第1卷,第1集,73頁,1980。
經濟部中央地質調查所,地質敏感區災害潛勢評估與監測-都會區周緣坡地山崩潛勢評估(1/4),第5-1 – 5-7頁,2007。
經濟部中央地質調查所,易淹水地區上游集水區地質調查與資料庫建置-集水區水文地質對坡地穩定性影響之調查評估計畫,第1 期,609頁,2007
廖啟雯,機率式地震誘發山崩危害度分析–以國姓地區為例,國立中央大學地球物理研究所博士論文,120頁,2004。
鄭元振,地理資訊系統在區域邊坡穩定分析之應用-中橫公路天祥至太魯閣段,國立成功大學礦冶及材料科學研究所碩士論文,87頁,1992。
鄭傑銘,應用 GIS 進行豪雨及地震引致山崩之潛感性分析,國立台灣大學土木工程研究所碩士論文,136頁,2003。
鄧聚龍,灰色分析入門,高立圖書有限公司,150頁,2000。
盧育聘,類神經網路於公路邊坡破壞潛能之評估,立德管理學院資源與環境管理研究所碩士論文,99頁,2003。
謝獻仁,類神經網路於落石坡危險度評估,國立交通大學土木工程研究所碩士論文,147頁,1998。
簡李濱,應用地理資訊系統建立坡地安定評估之計量方法,國立中興大學土木工程研究所碩士論文,114頁,1992。20蘇苗彬,集水區坡地安定評估之計量分析方法,中華水土保持學報,第29卷,第2期,105-114,1998。
魏鎮東,南橫公路邊坡落石坍方可能性之探討,國立台北科技大學材料及資源工程系碩士班碩士論文,167頁,2001。
藍世欽,工程地質因子對道路邊坡穩定性之影響-以南橫公路甲仙至梅山段,國立成功大學
指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明