博碩士論文 966202601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.118.152.234
姓名 魏多堂(Kieu Duy Thong)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 大地電磁法應用在台灣地區之海岸效應
(Coast effect on magnetotelluric data in Taiwan Island)
相關論文
★ 時間域電磁法應用於地下金屬之探測★ 應用地電阻法於土石流地滑之研究
★ 大地電磁資料多站多頻分析於 台灣中部及金門地區地殼電性構造★ 台灣東部利稻池上地區深部電性構造
★ 大地電磁法探查台灣清水地熱區★ 車籠埔斷層與梅山斷層之地電研究
★ 應用大地電磁法研究台灣地區之電性構造★ 臺灣深部電性構造及其板塊構造意義
★ 整合地球物理方法研究變質岩區地熱構造-以金崙地熱區為例★ 活動斷層電性研究 — 以湖口、新城及山腳斷層為例
★ 大地電磁影像加強了解地熱構造:宜蘭清水地熱案例★ 宜蘭平原南緣山區之電性構造
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大地電磁法(Magnetotellurics)是利用天然的電磁場來研究地下深部地殼電阻率變化,其長週期資料將強烈的受到海岸效應的影響。本研究使用三維順推模擬來估計海岸效應對台灣地區大地電磁法資料的影響,利用各種參數,包括 Bahr, WAL, rotational invariants, phase tensor 和induction arrow等,來評估海岸效應和地電模形維度,並進一步應用相減法去除海岸效應。
模擬的結果顯示,週期大於100秒的大地電磁資料強烈的受到海岸效應影響,台灣東部大於台灣西部,台灣北部大於台灣中部和南部,值得注意的是海岸效應最低出現在中南部山區,這可能與來自台灣東方和西南方的兩處深海效應有關。長週期資料的海岸效應取決於圍岩位置,頻率和電阻率。由於海岸效應影響到大地電磁法資料的維度分析以及電性走向,如果沒有修正海岸效應,資料解釋可能會造成錯誤。
大地電磁法應用在台灣北部宜蘭地區的清水地熱場,估算海岸效應的影響從週期10秒開始,大於探測目標的週期,因此逆推之前不需要作海岸效應修正,逆推結果指出,深度6-12公里處存在和地熱有關的低阻帶。
摘要(英) The Magnetotellurics (MT) utilizes naturally occurring electromagnetic field to determine electrical resistivity variations within the sub-surface. Using MT to investigate deeper parts of the crust beneath Taiwan Island acquires longer period data that is also strongly influenced by the coast effect (CE) around Taiwan.
In this study, the models were created by using three dimension (3D) forward modeling to evaluate the CE on MT data from Taiwan Island. Parameters Bahr’s, WAL rotational invariants, phase tensor (PT), together with induction arrow (IA) are used to figure out the CE and the dimensionality as well. Moreover, the subtraction method is also applied to both synthetic and real data to remove the CE on the IA.
The modeling results show that the 3D CE are generally significant for periods longer than 100s, higher in eastern Taiwan than in western one, pronounce in northern Taiwan than in the southern and middle one. It worth noting that the presence of the lowest value of 3D indicators zone between south-middle Taiwan give an evident of the lowest CE in Taiwan. It may relate to the balance of the CE between two deepest ocean parts, east and south-west-south, surround Taiwan. More detailed study for those longer periods show that the CE depends on location, frequency, and resistivity of host media. Therefore, the CE should inference the dimensional analysis, and the geoelectrical strike determination; those are the routine processing of the MT data reduction; without having correction of the CE will lead to misinterpretation.
Other than the CE assessment, the removal of the CE is also applied to a real data, which were carried out in the Chingshui geothermal field, Yilan, Northeast Taiwan. As the CE beginning at period about 10s, longer than the exploration target, it is not necessary to do the CE correction before data inversion. The inversion results point out the low resistivity zone relating geothermal reservoir at depth of 6-12 km.
關鍵字(中) ★ 台灣
★ 海岸效應
★ 大地電磁法
關鍵字(英) ★ Taiwan
★ coast effect
★ magnetotelluric
論文目次 English abstract i
Chinese abstract ii
Table of Contents iv
List of Figures vi
List of Tables xi
Explanation of Symbols xii
Chapter 1 Introduction 1
1.1 Setting of Taiwan Island 1
1.2 Application of MT method in Taiwan 2
1.3 Overview of the research about coast effect on MT data 3
1.4 Ocean coast effect on MT data in Taiwan 4
1.5 Research Objective 5
Chapter 2 Geoelectric Dimensionality 8
2.1 Fundamental rotational invariants of the MT tensor 8
2.2 Bahr parameters 10
2.3 WAL rotational invariant parameters 11
2.4 Bahr-Q method 14
2.5 The MT phase tensor 15
2.6 Summary 20
Chapter 3 Evaluating the Coast Effect 25
3.1 Simple model 26
3.1.1 The CE on impedance tensor and magnetic transfer function 27
3.1.2 Assessment of the models using induction arrows 28
3.2 Model of Taiwan Island 29
3.3 Removal of the coast effect 31
3.3.1 Coast effect response range 31
3.3.2 Removal of the coast effect 32
3.4 Summary 32
Chapter 4 The Coast Effect on Dimensionality Analysis 49
4.1 Bahr-Q method 49
4.2 WAL method 50
4.3 Phase tensor method 51
4.3.1 Dimensionality analysis using phase tensor method 51
4.3.2 Geoelectric strike 52
4.4 Geoelectric model of Taiwan 53
4.5 Summary 54
Chapter 5 Application: The Coast Effect on Chingshui Geothermal Field 61
5.1 Introduction 61
5.2 Magnetotelluric survey in the Chingshui area 62
5.3 The CE on MT data in the Chingshui geothermal field 63
5.4 Dimensionality analysis 64
5.4.1 Induction arrow 64
5.4.2 Phase tensor 64
5.4.3 Dimensionality 65
5.5 Inversion 66
5.5.1 2D versus 3D magnetotelluric data interpretation 66
5.5.2 Inversion 67
5.6 Summary 69
Chapter 6 Conclusions 79
References 81
Appendix A Background theory of magnetotellurics 86
Appendix B MT dimensionality models 89
Appendix C Resistivity media beneath Taiwan island 94
Appendix E Flowchart of classification dimensionality programs 97
Appendix F Comparing the phase tensor illustration 98
Appendix G Comparison the dimensionality classifications 99
Appendix H Method to correct the coast effect on impedance tensor 100
參考文獻 References
Agarwal, K., and Weaver, J.T., 1989. Regional electromagnetic induction around the Indian peninsula and Sri Lanka; a three-dimensional numerical model study using the thin sheet approximation, Phys. Earth Planet. Inter., 54, 320-331.
Bahr, K., 1988. Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion, J. Geophys., 62, 119-127.
Bahr, K., 1991. Geological noise in magnetotelluric data: a classification of distortion types, Phys. Earth planet. Inter., 66, 24-38.
Becken, M., Ritter O., and Burkhardt, H., 2008. Mode separation of magnetotelluric responses in three-dimensional environments, Geophys. J. Int., 172, 67-86.
Berdichevsky, M.N., 1999. Marginal notes on magnetotellurics, Survey Geophysics, 20, 341-375.
Bertrand, E., Unsworth, M., Chiang, C.W., Chen, C.S., Chen, C.C., Türkoğlu, E., Shu, H.H., and Hill, G., 2008. Magnetotelluric studies of the arc-continent collision in Central Taiwan, IAGA WG Workshop Beijing, China.
Bibby, M.H., Caldwell, T. G., and Brown, C., 2005. Determinable and non-determinable parameter of galvanic distortion in magnetotellircs, Geophys. J. Int., 163, 915-930.
Caldwell, T.G., Bibby, H.M. and Brown, C., 2004. The Magnetotelluric Phase Tensor, Geophys.J. Int., 158, 457-469.
Chen, C.S., Chen, C.C., Chiang, C.W., Shu, H.H, Chiu, W.H., Unsworth, M., and Bertrand, E., 2007. Crustal Resistivity Anomalies Beneath Central Taiwan Imaged by a Broadband Magnetotelluric Transect, Terr. Atmos. Ocean. Sci., Vol. 18, No.1.
Chen, C. C., and Chen. C. S., 2002, Sanyi-Puli conductivity anomaly in NW Taiwan and its implication for the tectonics of the 1999 Chi-Chi earthquake, Geophys. Res. Lett., 29, doi: 10.1029/2001GL013890.
Chen, C.C., and Chen, C.S., 1998. Preliminary result of magnetotelluric soundings in the fold-thrust belt of Taiwan and possible detection of dehydration,
Tectonophysics, 292, 101-117.
Chen, C.S., Chen, C.C., Chou, and Keyson, 1998. Deep electrical structure of Taiwan as inferred from magnetotelluric observations, Terr. Atmos. Ocean, 9, 51-68.
Chen, C.S., and Chen, C.C., 2000. Magnetotelluric soundings of the source area of the 1999 Chi-Chi earthquake in Taiwan: evidence for fluids at the hypocenter, Terr. Atmos. Ocean, 11, 679-688.
Dosso, H.W., and Meng, Z.W., 1992. The coast effect response in geomagnetic field measurements, Phys. Earth Planet. Inter., 70, 39-56.
Groom, R.W. and Bailey, R.C., 1989. Decomposition of the magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion, J. Geophys. Res., 94, 1913-1925.
Ho, C.S., 1999. An introduction to geology of Taiwan explanatory of the geologic map of Taiwan, Central geological survey, the Ministry of Economic Affairs, Taiwan, Republic of China.
Hsu, H. L., 2007. MT study in Chingshui geothermal area of Taiwan. Master Thesis, National Central University. Graduate Institute of Geophysics.
Jiracek, G., 1990. Near-surface and topographic distortions in electromagnetic induction. Surv. Geophys., 11, 163-203.
Larsen, J., 1977. Removal of local surface conductivity effects from low frequency mantle response curves, Geodinamica Acta, 12, 183-186.
Ledo, J., 2005. 2D versus 3D magnetotelluric data interpretation, Survey in Geophysics, 26, 511-543.
Ledo, J., Queralt, P., Martí, A. and Jones, A.G., 2002b. Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of limitations and resolution, Geophys. J. Int., 150,127-139.
Lin, C. H. and Yeh, Y. H., 2001. Three-dimensional p- and s-wave velocity structures of the Chingshui-Tuchang geothermal area in northeastern Taiwan, Western Pacific Earth Sciences, Vol.1, No.1, p.73-84.
Lin, A. T., Wattsw, A. B., and Hesselbow, S. P., 2003. Cenozoic stratigraphy and subsidence history of the South China Seamargin in the Taiwan region, Basin Research, 15, 453–478, doi: 10.1046/j.1365-2117.2003.00215.x.
Lin, C. H., 2000. Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 324, 189–201.
Lin, C. W. and C. N. Yang, 1999: Structure styles of the slate and schist belts in northeastern Taiwan. Bull. Cent. Geol. Surv., 12, 39-62.
Mackie, R. L., Bennett, B.R., and Madden, T.R., 1996. Long-period magnetotelluric measurements near the central California coast: a land-locked view of the conductivity structure under the Pacific Ocean, Geophys. J., 95, 181-194.
Mareschal, M., Vasseur, G., Srivastava, B.J., and Singh, R.N., 1987. Induction models of southern India and the effect of off-shore geology, Phys. Earth Planet. Inter., 45, 137-148.
Martí, A., 2006. A Magnetotelluric investigation of geoelectrical dimensionality and study of the Central Betic crustal structure, Ph.D. Thesis, Universitat de Barcelona, Departament de Geodinàmica i Geofísica.
Martí, A., Queralt, P., Jones, A.G. and Ledo, J., 2005. Improving Bahr’s invariant parameters using the WAL approach, Geophys. J. Int., 163, 38-41.
McKay, A.J., 2003. Geoelectric Fields and Geomagnetically Induced Currents in the United Kingdom, Ph.D. Thesis, University of Edinburgh.
McNeice, G and Jones, A.G., 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data, Geophysics, 66, 158-173.
Monteiro Santos, F.A., Nolasco, M., Almeida, E.P., Pous, J., and Mendes-Victor, L.A., 2001. Coast effects on magnetic and magnetotelluric transfer functions and their correction: application to MT soundings carried out in SW Iberia, Earth and Planetary Science Letters, 186, 283-295.
Monteiro Santos, F. A., Almeida, E.P., Pous, J., Nolasco, M., Queralt, P., Marcuello, A., and Mendes-Victor, L.A., 1999. Oceanic effects on MT data acquired in Iberian Peninsula, MARELEC Conference, Brest.
Moorkamp. M., 2007. Comment on ‘The mangetotelluric phase tensor’ by T. Grant Caldwell, Hugh M. Bibby and Colin Brown, Geophys. J. Int., 171, 565-566.
Pandey, D., Sinha, M., MacGregor, L., and Singh, S., 2008. Ocean coast effect on magnetotelluric data: a case study from Kachchh, India Mar, Geophys Res, 29,185–193.
Parkinson, W. D., 1962. The influence of continents and oceans on geomagnetic variations, Geophys. J. R. Astron. Soc., 6, 441-449.
Parkinson, W. D., 1959. Directions of rapid geomagnetic fluctuations, Geophys. J.R. Astrol. Soc. 2, 1-13.
Pringle, D., Ingham, M., McKnight, D., and Chamalaun, F., 2000. Magnetovariational soundings across the South Island of New Zealand: difference induction arrows and the Southern Alps conductor, Phys. Earth Planet. Inter., 119, 285-298.
Szarka, L. and Menvielle, M., 1997. Analysis of rotational invariants of the magnetotelluric impedance tensor, Geophys. J. Int., 129,133-142.
Seama, N., Baba, K., Utada, H., Toh, H., Tada, N., Ichiki, M., and Matsuno, T., 2007. 1D electrical conductivity structure beneath the Philippine Sea: Results from an ocean bottom magnetotelluric survey, Physics of the Earth and Planetary Interiors, 162, 2–12.
Simpson, F., and Bahr, K., 2005. Practical Magnetotellurics, Cambridge University.
Smith, J.T., 1995. Understanding telluric distortion matrices, Geophys. J. Int., 122, 219-226.
Siripunvaraporn, W., Egbert, G., Lenbury, Y. and Uyeshima, M., 2005. Three-dimensional magnetotelluric inversion: data-space method, Physics of the Earth and Planetary Interiors, 150, 3-14.
Tong, L. T., Ouyang, S., Guo, T. R., Lee, C. R., Hu, K. H., Lee, C. L., and Wang, C. J., 2008. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan, Terr. Atmos. Ocean. Sci., Vol. 19, No. 4, 413-424.
Vasseur, G., and Weidelt, P., 1997. Bimodal electromagnetic induction in non-uniform thin sheets with an application to northern Pyrenean induction anomaly, Geophys. J.R. Astrol. Soc. 51, 669-690.
Vozoff, K., 1972. The magnetotelluric method in the exploration of sedimentary basins, Geophysics, 37, 98-141.
Vozoff, K. 1991. The magnetotelluric method. In: Electromagnetic Methods in Applied Geophysics – Vol 2. Applications. Soc. Expl. Geophys., Tulsa, OK.
Weaver, J. T., Agarwal, A.K. and Lilley, F.E.M., 2006. The relationship between the magnetotelluric tensor invariants and the phase tensor of Caldwell, Bibby and Brown, Explore Geophysics, 37, 261-267.
Weaver, J. T., Agarwal, A.K. and Lilley, F.E.M., 2000. Characterisation of the magnetotelluric tensor in terms of its invariants, Geophys. J. Int., 141, 321-336.
Weaver, J. T., 1994. Mathematical Methods for Geo-electromagnetic Induction, Research Studies Press and Wiley, New York, pp. 316.
Zhang, P., Roberts, R.G. and Pedersen, L.B., 1987. Magnetotelluric Strike Rules, Geophysics, 52, 267-278.
指導教授 陳洲生(Chow-Son Chen) 審核日期 2009-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明