博碩士論文 88624003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.142.12.240
姓名 蘇品如(Pin-Ju Su )  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 煤素質組成對熱裂分析之影響
(The influence of maceral composition on Rock-Eval Pyrolysis)
相關論文
★ 有機質成熟度之染色技術應用★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義
★ 大屯火山群地熱氣與溫泉水之地化特性★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例
★ 土石流誘發因子萃取對土石流危險溪流判定之影響★ 石油系統之有機材料與熱成熟度特性探討
★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例★ 車籠埔斷層深鑽岩心鏡煤素反射率研究
★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例★ 廢棄礦場環境影響綜合評估
★ 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例★ 九份-金瓜石地區火成作用對有機物成熟度之影響
★ 不同成熟度之有機成分探討★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究
★ 鏡煤素反射率抑制問題與熱模擬之探討★ 台灣中部深部沉積岩之生物質量分布
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 煤是一種混合物,包含了有機質、無機質、揮發份、水份等,藉由分離來富集所需成份有助於了解煤素質特性。煤素質的分離是利用各煤素質比重不同的原理,調製比重分離液並配合離心機進行分離。本研究欲了解煤素質分離後的熱裂分析特性,而在此之前須對分離液於熱裂分析中的影響進行試驗。並期日後能建立煤素質組成與熱裂分析的相對關係。
選擇三種無機化合物作為分離液的材料:溴化鋅、氯化鋅、碘化鉀,分別配置不同比重的溶液,將煤樣浸泡其中,再水洗及直接烘乾後進行熱裂分析。發現水洗過的樣本在各參數上都能回復至平均值;浸泡樣本部份則會因分離液材料熔點較低產生的包覆作用使Tmax提前、S2參數值降低,且分離液的比重愈大影響愈明顯。浸泡分離液對TOC的影響則是因分析樣品淨量不同所導致,水洗後亦可回復。綜合三種分離液的影響,以溴化鋅浸泡樣最接近線性行為,且水洗效果良好、價格低廉,故選用溴化鋅為分離液。
分離煤素質使用的煤樣是台灣中新世石底層之高揮發份煙煤,採自台北縣三峽鎮裕峰煤礦。選擇了三個分離區間:比重<1.22的部份可富集40%的膜煤素,約為原樣的三倍;比重1.30-1.35則以鏡煤素為主,又含少量的膜煤素;比重>1.35的部份由於膜煤素減少,使鏡煤素所佔比例提高。熱裂分析的結果發現,經過富集的煤素質組成可表現出煤素質的特性。在比重<1.22的煤樣中,Tmax、S3較低、S2則較大,表示具有較多碳氫化合物;比重>1.35的趨勢則相反,Tmax、S3較高、S2則較小,可能是由於比較上含較多曾受氧化的有機物;至於比重1.30-1.35的部份則在各參數上的數值皆居前兩者之間。在S1上則看不出有顯著隨比重變化的趨勢。但S1較易受到水洗的影響而流失,容易被低估,是需要注意的地方。
摘要(英) In order to understand better the properties of coal, macerals were separated by density liquid due to their difference in specific gravity. The purpose of this research is to know the properties of macerals in Rock-Eval pyrolysis. This study started from examining the influence of density liquid in pyrolysis, so as to choose the most suitable liquid for separation.
Three chemical compounds, zinc bromide, zinc chloride, and potassium iodide, were chosen as density liquids. Coal samples were soaked in different density liquid, then washed and dried for pyrolysis. It revealed that pyrolytic parameters could be resumed back to their original values after washing. Furthermore, chemical compounds with low melting point were expected to wrap the coal particles and causing Tmax advanced, and S2 decreased. This influence is more conspicuous when higher density liquid is prepared. As for the effect of TOC is attributed to the inclusion of chemical compounds. Based on the overall effect of density liquid in pyrolysis, zinc bromide is finally chosen as the density liquid for separation because of its better linear correlation, low price, and cleanness after washing.
The sample used is high volatile bituminous coal form Miocene Shihti Formation in Taiwan, collected from Yu-Feng mine near Sanshia, Taipei County. Three maceral mixtures were prepared after specific gravity 1.22, 1.30, 1.35 were chosen as thresholds for separation. The separation results indicate that the macerals with specific gravity <1.22 had 40% exinite about triple enrichment of the original sample; macerals with specific gravity 1.30-1.35 were primary vitrinite and some limited exinite; macerals with specific gravity >1.35, contained very few exinite. In the pyrolysis, the macerals with specific gravity <1.22 exhibit lower Tmax and S3, and higher S2. On the other hand, macerals with specific gravity >1.35 exhibit higher Tmax, S3, and lower S2. As for the parameters of macerals with specific gravity 1.30-1.35 were in between of the previous two maceral mixtures. Finally, there was no notable variation in S1 with specific gravity. However, it is noticed that S1 might be underestimated after washing.
關鍵字(中) ★ 比重液
★  煤
★  煤素質
★  熱裂分析
關鍵字(英) ★ coal
★  density liquid
★  maceral
★  Rock-Eval Pyrolysis
論文目次 目錄
摘要…………………………………………………………………… i
誌謝…………………………………………………………………… ii
目錄……………………………………………………………………iii
圖目…………………………………………………………………… vi
表目…………………………………………………………………… vii
第一章緒論…………………………………………………………… 1
1.1研究動機……………………………………………………… 1
1.2樣品簡介……………………………………………………… 3
第二章前人研究…………………………………………………… 5
2.1煤岩學簡介…………………………………………………… 5
2.1.1煤和有機質的分類………………………………… 5
2.1.2分析方法……………………………………………10
2.2重液離心分離煤素質…………………………………………12
2.2.1分離煤素質的目的…………………………………12
2.2.2分離技術的發展和應用……………………………12
2.2.3使用煤樣之顆粒大小………………………………15
2.3熱裂分析……………………………………………………15
2.4結語…………………………………………………………20
第三章實驗方法……………………………………………………22
3.1分離液選擇與調配…………………………………………22
3.2分離液對熱裂分析的影響…………………………………25
3.2.1浸泡與水洗…………………………………………25
3.2.2熱裂分析方法………………………………………25
3.3煤素質分離…………………………………………………27
3.3.1分離煤素質之比重範圍……………………………27
3.3.2分離煤素質…………………………………………31
3.4分析方法……………………………………………………34
3.4.1煤樣製作……………………………………………34
3.4.2煤樣拋光……………………………………………35
3.4.3數點分析……………………………………………36
3.5結語…………………………………………………………37
第四章結果與討論…………………………………………………39
4.1分離液對熱裂分析造成的影響………………………………39
4.1.1Tmax受分離液的影響…………………………………39
4.1.2S1受分離液的影響…………………………………43
4.1.3S2受分離液的影響…………………………………43
4.1.4TOC受分離液的影響………………………………43
4.1.5綜合討論……………………………………………49
4.2各比重範圍煤素質富集情形…………………………………50
4.3煤素質組成之熱裂分析特性…………………………………50
第五章結論…………………………………………………………61
參考文獻……………………………………………………………63
附錄……………………………………………………………………68
英文摘要………………………………………………………………72
英文摘要………………………………………………………………72
參考文獻 ASTM, 1975, Standard D-2797, ASTM Standard manual, Part 26, pp.350-354.
ASTM, 1977, Classification of coals by rank, D 388-77.
ASTM, 1980, Standard D-2797, Microscopical determination of volume percent of physical components in a polished specimen of coal, ASTM. Philadelphia, Pa.
Barker, C., 1974, Pyrolysis techniques for source-rock evaluation, The American Association of Petroleum Geologists Bulletin, V.58, N.11, pp.2349-2361.
Barker, C., 1996, Thermal modeling of petroleum generation: theory and applications, Elsevier Science B. V., Amsterdam— Lausanne- New York— Oxford— Shannon— Tokyo, 512p.
Baskin, D. K., 1997, Atomic H/C ration of kerogen as an estimate of thermal maturity and organic matter conversion, The American Association of Petroleum Geologists Bulletin, V.81, N.9, pp.1431-1450.
Bensley D. F. and Crelling, J. C., 1992, Low intensity spectral analysis (LISA) of coal macerals and the assessment of DGC fractions, Organic Geochemistry, V.18, N.3, pp.365-372.
Birtek, N., 1987, M.S. Thesis, University of Witwatersrand, S. Africa.
Bustin, R. M., 1991, Quantifying macerals: some statistical and practical considerations, International journal of coal geology, V.17, pp.213-238.
Burgess, J. D., 1974, Microscopic examination of kerogen ( dispersed organic matter) in petroleum exploration, Geol. Soc. Am. Special Paper 153, pp.19-30.
Clementz, D. M., 1979, Effect of oil and bitumen saturation on source-rock pyrolysis, The American Association of Petroleum Geologists Bulletin, V.63, N.12, pp.2227-2232.
Cloke, M., Clift, D.A., Gilfillan, A.J., Miles, N.J., Rhodes, D., 1994, Liquefaction of density separated coal fractions, Fuel Processing Technology, V.38, pp.153-163.
Cloke, M., Gilfillan, A.J., and Lester, E., 1997, The characterization of coals and density separated coal fractions using FTIR and manual and automated petrographic analysis, Fuel, V.76, pp.1289-1296.
Dormans, H.N.M., Huntjens, F.J., and van Krevelen, D.W., 1957, Chemical structure and properties of coal XX-composition of the individual macerals (vitrinites, fusinite, micrinites and exinites), Fuel, V.36. pp.321-339.
Dulhunty, J. A. and Penrose, R. E., 1951, Some relations between density and rank of coal, Fuel, V.30, pp.109-113.
Dyrkacz, G.R. and Horwitz, E. P., 1980, Separation of coal macerals, Fuel, V.61, pp.3-12.
Dyrkacz, G.R., Bloomquist, C.A.A., and Ruzcic, Ljiljana, 1983, Chemical variation in coal macerals separated by density gradient centrifugation, Fuel, V.63, pp.1166-1173
Espitalie, J., 1977, Source rock characterization method for petroleum exploration, 9th Offshore Technology Conference, pp.439-444.
Garcia-Vallès, M., Vendrell-Saz, M., and Pradell-Cara, T., 2000, Organic geochemistry (Rock-Eval) and maturation rank of the Garumnian coal in the central Pyreness (Spain), Fuel, V.79, pp.505-513.
Gilfillan, A., Lester, E., Cloke, M., and Snape, C., 1999, The structure and reactivity of density separated coal fractions, Fuel, V.78, pp.1639-1644.
Giraud, A., 1970, Application of pyrolysis and gas chromatograph to geochemical characterization of kerogen in sedimentary rocks, The American Association of Petroleum Geologists Bulletin, V.54, N.3, pp. 439-455.
Harwood, R. J., 1977, Oil and gas generation by laboratory pyrolysis of kerogen, The American Association of Petroleum Geologists Bulletin, V.61, N.12, pp.2082-2101.
Horton, H., 1952, Separation of coals into fractions of different densities, Fuel, V.31, pp.341-354.
Huang, H., Wang, S., Wang, K, Klein, M. T., and Calkins, W. H., 1999, Thermogravimetric and Rock-Eval studies of coal properties and coal rank, Energy & Fuels, V.13, pp.396-400.
Hunt, 1996, Petroleum geochemistry and geology (2nd ed.), W. H. Freeman and Company, New York, 743p.
Karas, J., Pugmire, R. J., Woolfenden, W. R., Grant, D. M., and Blair, S., 1985, Comparison of physical and chemical properties of maceral group separated by density gradient centrifugation, International journal of coal geology, V.5, pp.315-338.
Kinghorn, R.R.F., and Rahman, M., 1980, The density separation of different maceral groups of organic matter dispersed in sedimentary rocks, Journal of Petroleum Geology, V.2. N.4, pp.449-454.
Kinghorn, R.R.F., and Rahman, M., 1983, Specific gravity as a kerogen type and maturation indicator with special reference to amorphous kerogens, Journal of Petroleum Geology, V.6, N.2, pp.179-194.
Lanford, F. F., and Blanc-Valleron, M. -M., 1990, Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon, The American Association of Petroleum Geologists Bulletin, V.64, pp.799-804.
Maroto-Valer, M. M., Taulbee, D. N., and Hower, J. C., 1999, Novel separation of the differing forms of unburned carbon present in fly ash using density gradient centrifugation, Energy & Fuels, V.13, pp.947-953.
Rahman, M. and Kinghorn, R.R.F., 1995, A practical classification of kerogens related to hydrocarbon generation, Journal of Petroleum Geology, V.18, pp.91-102.
Rimmer, S. M., Cantrell D. J., and Gooding, P. J., 1993, Rock-Eval pyrolysis and vitrinite reflectance trends in the Cleveland Shale member of the Ohio Shale, eastern Kentucky, Organic Geochemistry, V.20, N.6, pp.735-745.
Rubiera, F., Parra, J.B., Arenillas, A., Hall, S.T., Shah, C.L., and Pis, J.J., 1999, Texture properties in density-separated coal fractions, Fuel, V.78, pp.1631-1637.
Selly, R. C., 1985, Elements of petroleum geology, Academic Press ( 2nd ed. ), San Diego-London-Boston-New York-Sydney-Tokyo-Toronto, 470p.
Stach, E., Mackowsky, M-Th., Teichmüller, M., Taylor, G. H., Chandra, D. and Teichmüller, R., 1982, Stach’s Textbook of coal petrology (3rd ed.), Berlin Stuttgar, Gebruder Borntraeger, 535p.
Stankiewicz, B. A., Kruge, M. A., and Crelling, J. C., 1994, Density gradient centrifugation: application to the separation of macerals of type I, Ⅱ, and Ⅲ sedimentary organic matter, Energy & Fuels, V.8, pp. 1513- 1521.
Taulbee, D, Poe, S. H., Robl, T., and Keogh, B., 1989, Density gradient centrifugation separation and characterization of maceral groups form mixed maceral bituminous coal, Energy & Fuels, V.3, pp.662-670.
Thomas, L., 1992, Handbook of practical coal geology, John Wiley & Sons Ltd, Chichester-New York-Brisbane-Toronto-Singapore, 338p.
Ting, F. T. C., 1978, Petrographic techniques in coal analysis. In: Karr, C., Jr. (ed.): Analytical Methods for coal and coal products, Academic Press Inc., New York, pp.3-26.
Tissot, B. P. and Welte, D. H., 1984, Petroleum formation and occurrence (2nd ed.) , Springer-Verlag, Berlin- Heidelberg- New York, 699p.
van Krevelen, D. W., 1961, Coal. Elsevier scientific publishing Co., Amsterdam-London-New York-Princeton, 514p.
Waples, D. W., 1985, Geochemistry in petroleum exploration, D. Reidel Publishing Co. Dordrecht- Boston- Lancaster. 232p.
White, A., Davies, M. R., and Jones, S.D., 1989, Reactivity and characterization of coal maceral concentrates, Fuel, V.68, pp.511-519.
何春蓀,1966,台灣北部石底層之研究,台灣省地質調查所彙刊 第十七號,第1-7頁。
何春蓀,1975,台灣地質概論台灣地質說明書,經濟部中央地質調查所出版,共163頁。
孫立中,1992,台灣竹苗地區煤岩學及油氣生成之研究,國立中央大學地球物理研究所碩士論文,共55頁。
孫立中,2000,抑制鏡煤素反射率之量測成因─以分離台灣裕峰煤樣為例,國立中央大學地球物理研究所博士論文,共81頁。

翁成敏,蔡雲開,張愛雲,1991,單一有機質顯微組分的分離與富集方法,中國東部找煤研討會論文彙編,第155-160頁。
游能悌,鄧屬予,1996,台灣北部中上中新統的岩相與沈積循環,地質 第15卷 第二期,第29-60頁。
游能悌,鄧屬予,1999,台灣北部大寮層與石底層之沈積環境,經濟部中央地質調查所彙刊 第十二號,第99-131頁。
鄔立言,顧信章,盛志緯,范成龍,童箴言,陳克明,1986,生油岩熱解快速定量評價,科學出版社,北京,共198頁。
黃榮茂,王禹文,林聖富,楊得仁,1992,化學化工百科辭典,曉園出版社。
蔡龍珆,1988,基隆-台北間煤層鏡煤素之共生次序含意,地質第8卷,1-2期,63-70頁。
指導教授 蔡龍珆(Louis L. Tsai) 審核日期 2001-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明