博碩士論文 966204008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.144.94.134
姓名 林衍丞(Yen-Cheng Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 廣域山崩潛感分析模型力學-水力參數逆分析
(Prospects and limitations on determining the hydraulic-mechanical parameters in regional susceptibility model using back analysis technique)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年山崩衍生之災害頻傳,使得山崩潛感分析成為熱門議題。山崩潛感分析可分為統計法與定率法,定率法較具物理意義,但要取得定率模型所需之力學與水力參數,則相當困難。透過逆分析,取得定率模型之參數則較為可行。然而,地質材料多具高度變異性,導致逆分析結果具不確定性。本研究以假設之案例( 共100個網格),探討逆分析技術於山崩潛感分析定率模型參數取得之前景與限制。假設案例共使用三種參數空間分布型態(均質;各網格參數為分布相同;前述分布於各網格以隨機空間分佈型態存在),以模擬各種不同參數分佈情形對逆分析之影響。藉由廣域邊坡穩定分析模型TRIGRS以及點估計法進行正分析,可獲得不同參數空間分佈假設下,各網格點之安全係數(或破壞機率)、山崩目錄以及水壓反應。逆分析時先假設全區為均質區,分別以山崩目錄、安全係數率定強度參數(凝聚力、摩擦角)與水力參數(水力傳導係數及水力擴散率),而後再加入水壓反應資料,先率定水力參數,再利用山崩目錄或安全係數率定強度參數;其次考慮參數為常態或對數常態分布,但假設參數為定值,利用水壓反應與山崩目錄(或安全係數)率定水力與強度參數進行逆分析;最後,考慮參數異質性,利用水壓反應與山崩目錄(或破壞機率)率定水力與強度參數平均值與變異係數。結果顯示,若僅以山崩目錄,甚至利用安全係數或破壞機率進行參數率定,逆分析結果並不理想且非唯一。然而加入水壓反應先率定水力參數,再利用山崩目錄或安全係數進行強度參數逆分析,雖無法完全去除率定參數之非唯一性,但可有效地降低其非唯一性,且提升逆分析結果準確性。另外,若區域參數為一分布,但將其視為均質區進行逆分析,則逆分析所得參數與給定參數之平均值相距甚遠。最後,逆分析參數平均值與標準差之結果接近實際之參數分布,然非唯一性仍存在。由正算反應與各參數間相關性分析結果可知,山崩目錄及安全係數與水力參數之相關性偏低,此結果顯示僅使用山崩目錄(主要受強度參數與地形控制)欲反算水力參數並不合理。由相關性分析亦可發現水壓及山崩目錄與參數之相關性深受降雨強度與延時影響,故以定率法山崩潛感分析模式進行參數逆分析時,若能獲得不同時期(不同降雨強度與延時)之山崩目錄,則可有效地提升逆分析廣域參數之效能。
摘要(英) Landslide susceptibility analysis is crucial from hazard mitigation viewpoint. Statistical and deterministic approaches are frequently adopted for landslide susceptibility analysis. Based on physical models, deterministic approaches are superior to the statistical approaches for deterministic approaches fully taking the mechanical mechanisms into account. However, it is difficult to get the required hydraulic-mechanical parameters in a deterministic model. Back analysis is a promising way to calibrate the required parameters. Nevertheless, fewer researches really pay attention to discuss the accuracy of back analysis results. Therefore, this research uses hypothetical cases to evaluate the prospects and limitations of back analysis of regional hydraulic-mechanical parameters in a deterministic model. Three different spatial distribution types of hydraulic-mechanical parameters were assigned. Thereafter, landslide inventory, distribution of safety factor and failure probability, and pressure head of the hypothetical cases were calculated using a deterministic model, TRIGRS. These responses then used to calibrate the input parameters. The results show If we only use landslide inventory to calibrate (cohesion, friction angle, hydraulic conductivity and hydraulic diffusivity), the back calculation results which the best fit parameters are not unique and different from given parameters. The results also show if we can add hydrologic data to calibrate hydraulic parameters first, it can improve back analysis results and reduce non-uniqueness of calibrated parameters. From correlation analysis, we find the correlation coefficient between hydraulic parameters and landslide inventory is low and rainfall duration and intensity will affect it, so only use landslide inventory to calibrate hydraulic parameters is not reasonable. Calibration results can be further improved if we can obtain more event based landslide inventory maps (different intensity or duration) and combine to back analysis method.
關鍵字(中) ★ 淺層山崩
★ 逆分析
★ TRIGRS
★ 點估計法
★ 不確定性分析
關鍵字(英) ★ back analysis
★ TRIGRS
★ shallow landslide
★ calibration methods
論文目次 中文摘要..................................................i
英文摘要.................................................ii
誌謝....................................................iii
目錄.....................................................iv
圖目錄..................................................vii
表目錄..................................................xii
一. 緒論.............................................1
1.1 研究動機與目的...................................1
1.2 研究架構流程圖...................................2
1.3 論文各章內容.....................................3
二. 文獻回顧.........................................4
2.1 區域性山崩潛感分析...............................4
2.2 統計方法 (statistical method)....................7
2.2.1 分析模型之驗證方法...............................7
2.3 定率方法 (deterministic method).................10
2.4 逆分析區域參數相關研究..........................14
2.5 參數不確定性相關研究............................24
三. 研究方法........................................27
3.1 建立參數分佈型態及正算結果......................27
3.1.1 待定參數選擇....................................29
3.1.2 給定研究區域坡度及正算參數......................29
3.1.3 物理模型正算....................................32
3.1.4 產生正算反應....................................40
3.2 參數逆分析......................................40
四. 設計之研究案例..................................45
4.1 逆算參數選擇....................................45
4.2 建立之模擬研究區................................46
4.3 TRIGRS計算結果正確性檢核........................49
4.4 假設案例正算結果................................53
五. 參數逆分析成果與討論............................60
5.1 全區參數為均質情況之逆分析......................60
5.1.1 以山崩目錄同時率定水力及力學參數................60
5.1.2 以安全係數分佈同時率定水力及強度參數............63
5.1.3 以水壓率定水力參數,山崩目錄率定強度參數........65
5.1.4 以水壓率定水力參數,安全係數率定強度參數........67
5.2 參數為異質性,但假設參數為定值之逆分析結果......68
5.2.1 參數為分布(Type II),但視為定值進行率定.........69
5.2.2 參數為分布(Type III),但視為定值進行率定........70
5.3 常態或對數常態分布參數平均值與標準差之逆分析....72
5.3.1 參數為Type II分布,逆算其平均值與標準差.........72
5.3.2 參數為Type III分布,逆算其平均值與標準差........75
5.4 各逆算參數與正算反應關聯性分析..................76
5.5 多時期山崩目錄之參數率定結果....................80
5.5.1 不同降雨強度事件誘發之山崩目錄逆分析............80
5.5.2 同一降雨事件不同降雨延時之山崩目錄逆分析........82
5.5.3 多暴雨事件誘發之山崩目錄逆分析..................84
5.6 其他關於逆分析效能之討論........................86
5.6.1 山崩潛感分析各驗證方法存在之問題................86
5.6.2 使用不同率定準則結果之比較......................91
六. 結論與建議......................................99
6.1 結論............................................99
6.2 建議...........................................101
參考文獻................................................102
附 錄 一................................................113
附 錄 二................................................115
附 錄 三................................................116
附 錄 四................................................117
附 錄 五................................................120
參考文獻 [1] Hong, Y., Adler, R. F., Huffman, G. J., “Satellite remote sensing for global landslide monitoring”, EOS Transactions American Geophysical, Vol. 88(37), pp. 357-358, 2007.
[2] Wilkinson, P. L. and Lloyd, D. M., “An intergrated hydrological model for rain-induced landslide prediction”, Earth Surface Processes and Landforms, Vol. 27, pp. 1285-1297, 2002.
[3] Zhou, G., Esaki, T., Mitani, Y., Xie, M., Mori J.,”Spatial probabilitic modeling of slope failure using an integrated GIS Monte Carlo simulation approach,” Engineering Geology, Vol. 68 , pp. 373-386, 2003.
[4] Lan, H. X., Zhou, C. G., Lee, C. F., Wang, S. J., Wu, F.Q., “Rainfall-induced landslide stability analysis in response to transient pore pressure”, Science in China Series E Technological Science, Vol. 46, pp. 52-68, 2003.
[5] Baum, R. L., Coe, J. A., Godt, J. W., Harp, E. L., Reid, M. E., Savage, W. Z., Schulz, W. H. Brien, D. L., Chleborad, A. F., McKenna, J. P., Michael, J. A., “Regional landslide-hazard assessment for Seattle, Washington, USA”, Landslides, Vol. 2, pp. 266-279, 2005.
[6] Chen, C. Y., Chen, T. C., Yu, F. C., Lin, S. C., “Analysis of time-varying rainfall infiltration induced landslide ”, Environmental Geology, Vol. 48, pp. 466-479, 2005.
[7] Salciarini, D., Godt, J. W., Savage, W. Z., Conversini, P., Baum, R. L., Michael, J. A., “Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy”, Landslides, Vol. 3, pp. 181–194, 2006.
[8] 吳佳郡,「降雨誘發山崩之潛感分析初探」,國立暨南大學,碩士論文,民國95年。
[9] Liu, C. N. and Wu, C. C., “Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach”, Environmental Geology, Vol. 55(4), pp. 907-915, 2008.
[10] 蘇歆婷,「降雨引發坡地淺崩塌風險評估模式之建立與應用」,國立交通大學,碩士論文,民國96年。
[11] Luzi, L., Pergalani, F., Terlien, M.T.J. “Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems”, Engineering Geology, Vol. 58, pp. 313-336, 2000.
[12] Dai, F. C., Lee, L. F., Ngai, Y. Y., “Landslide risk assessment and management: an overview”, Engineering Geology, Vol. 64, pp. 65-87, 2002.
[13] 陳嬑璇,「溪頭地區山崩潛感圖製作研究」,國立台灣大學,碩士論文,民國91年。
[14] 姜壽浩和徐美玲,「以局部穩定條件率定之邊坡土壤厚度估測模式」,地理學報,44,23-38頁,民國95年。
[15] 國立交通大學防災工程研究中心,石門水庫集水區崩塌與庫區淤積風險評估研究(2/3),經濟部水利署,民國96年。
[16] 中興工程顧問社,易淹水地區上游集水區地質調查與資料庫建置第1階段實施計劃─集水區水文地質對坡地穩定性影響之調查評估─教育訓練,經濟部中央地質調查所,民國97年。
[17] 鍾欣翰,「考慮水文模式的地形穩定分析-以匹亞溪集水區為例」,國立中央大學,碩士論文,民國97年。
[18] Gelhar, L. W., Stochastic subsurface hydrology, Prentice-Hall Inc., New Jersey, 1993.
[19] Fetter, C. W., Applied Hydrology, Macmillan College Publishing Company Inc., New York, 1994.
[20] Harr, M. E., Mechanics of particulate media, McGraw-Hill, New York, 1977.
[21] Refice, A., Capolongo, D., “Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment”, Computers and Geosciences, Vol. 28, pp. 735-749, 2002.
[22] Shou, K. J. and Chen, Y. L., “Spatial risk analysis of Li-shan landslide in Taiwan”, Engineering Geology, Vol. 80, pp. 199-213, 2005.
[23] Jelinek, R., Wagner, P., “Landslide hazard zonation by deterministic analysis(Velka Causa landslide area, Slovakia)”, Landslides, Vol. 4(4), pp. 339-350, 2007.
[24] Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F., “Probabilistic landslide hazard assessment at the basin scale”, Geomorphology, Vol. 72, pp. 272-299, 2005.
[25] Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., “Statistical approach to earthquake induced landslide susceptibility”, Engineering Geology, Vol. 100, pp. 43-58, 2008.
[26] Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., “Statistical approach to storm event-induced landslides susceptibility”, Natural Hazards and Earth System Sciences, Vol. 8, pp. 941-960, 2008.
[27] Johnson, K. A. and Sitar, N., ”Hydrologic conditions leading to debris-flows initiation”, Canadian Geotechnical Journal, Vol. 27(6), pp. 789-801, 1990.
[28] Jibson, R. W., Harp, E.L., Michael, J.A., ”A method for producing digital probabilistic seismic landslide hazard maps,” Engineering Geology, Vol. 58, pp. 271-289, 2000.
[29] Collins, B. D. and Znidarcic, D., “Stability analysis of rainfall induced landslides”, Journal of Geotechnical and Geoenvironmental Engineering, pp. 362-372, 2004.
[30] 朱聖心,「應用地理資訊系統製作地震及雨量所引致之山崩危險圖」,國立台灣大學,碩士論文,民國90年。
[31] 陳弘恩,「降雨引發坡地淺崩塌模式之建立與探討」,國立交通大學,碩士論文,民國94年。
[32] Baum, R. L., Savage, W. Z., Godt, J. W., “TRIGRS – A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis”, USGS Open-file Report 02-424, 2002.
[33] Dietrich, W. E. and Montgomery, D. R., “A physically based model for the topographic control on shallow landsliding”, Water Resources Research, Vol. 30(4), pp. 1153-1171, 1994.
[34] Pack, R. T., Tarboton, D. G., Goodwin, C. N., “Terrain Stability Mapping with SINMAP, technical description and users guide for version 1.0”, Report Number 4114-0, Terratech Consulting Ltd., Salmon Arm, B.C., Canada, 1998.
[35] Godt, J. W., Baum, R. L., Savage, W. Z., Salciarini, D., Schulz, W. H., Harp, E. L., “Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework”, Engineering Geology, Vol. 102, pp. 214-226, 2008.
[36] 王佩兮,「應用TRIGRS模式評估降雨及入滲誘發池上山棕寮地滑之影響研究」,國立中正大學,碩士論文,民國96年。
[37] Pang, J. F., Li, M., Han, J. Y., “Analysis of the time spectrum recorded in thermal neutron time spectrometry logging”, Well Logging Technology, Vol. 24(1), pp. 14-19, 2000.
[38] Friedel, M. J., “Simultaneous inverse estimation of coupled water, heat, and solute transport parameters with model validation and predictive analysis; application to ground-water studies in arid and semi-arid regions of the United States”, University of Minnesota, PhD Thesis, 2003.
[39] Bertolo, P. and Wieczorek, G. F., “Calibration of numerical models for small debris flows in Yosemite Valley, California, USA”, Natural Hazards and Earth System Sciences, Vol. 5, pp. 993-1001, 2005.
[40] Wiles, T. D., “Reliability of numerical modelling predictions”, International Journal of Rock Mechanics and Mining Sciences, Vol. 43, pp. 454-472, 2006.
[41] Burton, A., Arkell, T. J., Bathurst, J. C., “Field variability of landslide model parameters”, Environmental Geology, Vol. 35(2–3), pp. 100-114, 1998.
[42] Gupta, H. V., Bastidas, L. A., Sorooshian, S., Shuttleworth, W. J., Yang, Z. L., “Parameter estimation of a land surface scheme using multicriteria methods”, Journal of Geophysical Research, Vol. 104(16), pp. 19491-19503, 1999.
[43] Zentar, R., Hicher, P. Y., Moulin, G., “Identification of soil parameters by inverse analysis”, Computers and Geotechnics, Vol. 28, pp. 129-144, 2001.
[44] Crosta, G. B., Chen, H., Frattini, P., “Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches”, Engineering Geology, Vol. 83, pp. 236- 253, 2006.
[45] Levasseur, S., Malecot, Y., Boulon, M., Flavigny, E., “Soil parameter identification using a genetic algorithm”, International Journal for Numercial and Analytical Mrthods in Geomechanics, Vol. 32, pp. 189-213, 2008.
[46] 陳堯中,游步上,余俊賢,「卵礫石層隧道變形參數之最佳化回饋分析」,海峽兩岸隧道與地下工程學術與技術研討會,大連,中國大陸,2008年8月。
[47] Simunek, J., van Genuchten, M. Th., Gribb, M. M., Hopmans, J. W., “Parameter estimation of unsaturated soil hydraulic properties from transient flow processes”, Soil and Tillage Research, Vol. 47, pp.27-36, 1998.
[48] Jhorar, R. K., van Dam, J. C., Bastiaanssen, W. G. M., Feddes, R A., “Calibration of effective soil hydraulic parameters of heterogeneous soil profiles”, Journal of Hydrology, Vol. 285, pp. 233-247, 2004.
[49] Abbaspour, K. C., Johnson, C. A., van Genuchten, M. Th., “Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure”, Vadose Zone Journal, Vol. 3, pp. 1340–1352, 2004.
[50] Abbaspour, K. C., “Calibration of hydrologic models:when is a model calibrated?”, MODSIM 2005 International Congress on Modelling and Simulation, Zerger, A. and Argent, R. M. (Eds.), Modelling and Simulation Society of Australia and New Zealand, pp. 2449-2455, 2005.
[51] Lazarovitch, N., Ben-Gal, A., Simunek, J., Shani, U., “Uniqueness of soil hydraulic parameters determined by a combined wooding inverse approach”, Soil Science Society of America Journal, Vol. 71, pp. 860-865, 2007.
[52] Schmied, B., Abbaspour, K., Schulin, R., “Inverse estimation of parameters in a nitrogen model using field data”, Soil Science Society of America Journal, Vol. 64, pp. 533-542, 2000.
[53] McKenna, S. A., Chan-Hilton, A. B., Lefrancois, M., Groundwater quality modeling and management under uncertainty, Mishra, S. (Ed.), American Society of Civil Engineers, United States, 2003.
[54] Madsen, H., “Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives”, Advances in Water Resources, Vol. 26, pp. 205-216, 2003.
[55] Frattini, P., Crosta, G. B., Fusi, N., Negro, P. D., “Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment”, Engineering Geology, Vol. 73, pp. 277–295, 2004.
[56] Vrugt, J. A., Schoups, G., Hopmans, J. W., Young, C., Wallender, W. W., Harter, T., Bouten, W., “Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization”, Water Resources Research, Vol. 40, 2004.
[57] Schoups, G., Hopmans, J.W., Young, C. A., Vrugt, J. A., Wallender, W. W., “Multi-criteria optimization of a regional spatially-distributed subsurface water flow model”, Journal of Hydrology, Vol. 311, pp. 20-48, 2005.
[58] Lin, Z. and Radcliffe, D. E., “Automatic calibration and predictive uncertainty analysis of a semidistributed watershed model”, Vadose Zone Journal, Vol. 5, pp. 248-260, 2006.
[59] Schuol, J. and Abbaspour, K. C., “Calibration and uncertainty issues of a hydrological model (SWAT) applied toWest Africa”, Geosciences, Vol. 9, pp. 137-143, 2006.
[60] Martins, J. and Monteiro, J. P., “Coupling monitoring networks and regional scale flow models for the management of groundwater resources: The Almadena-Odeaxere Aquifer Case Study (Algarve-Portugal)”, HydroPredict2008, Prague, Czech Republic, september 2008.
[61] Schuol, J., Abbaspour, K. C., Sarinivasan, R., Yang, H., “Estimation of freshwater availability in the West African Sub-continent using the SWAT hydrologic model”, Journal of Hydroloy, Vol. 352, pp. 30-49, 2008.
[62] Pack, R. T., Tarboton, D. G., Goodwin, C. N., “The SINMAP approach to terrain stability mapping”, International Association of Engineering Geology, Vancouver, British Columbia, Canada, September 1998.
[63] Casadei, M., Dietrich, W. E., Miller, N. L., “Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes”, Earth Surface Processes and Landforms, Vol. 28, pp. 925-950, 2003.
[64] Guimaraes, R. F., Montgomery, D. R., Greenberg, H. M., Fernandes, N. F., Gomes, R. A. T., Junior, O. A. C., “Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro”, Engineering Geology, Vol. 69, pp. 99-108, 2003.
[65] 廖啟雯,「機率式地震誘發山崩危害度分析–以國姓地區為例」,國立中央大學,博士論文,民國93年。
[66] Pack, R.T., Tarboton, D.G., Goodwin, C.N., Prasad, A., “SINMAP 2, a stability index approach to terrain stability hazard mapping. Technical Description and User's Manual for version 2.0.” Utah State University, USA, 2005.
[67] Meisina, C., Scarabelli, S., “A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils”, Geomorphology, Vol. 87, pp. 207-223, 2007.
[68] Deb, S. K., El-Kadi, A. I., “Susceptibility assessment of shallow landslides on Oahu, Hawaii, under extreme-rainfall events” , Geomorphology, Vol. 108, pp. 219-233, 2009.
[69] Tsai, T. L., Yang, J. C., “Modeling of rainfall-triggered shallow Landslide”, Environmental Geology, Vol. 50, pp. 525–534, 2006.
[70] Friedel, M. J., “Coupled inverse modeling of vadose zone water, heat, and solute transport: calibration constraints, parameter nonuniqueness, and predictive uncertainty”, Journal of Hydrology, Vol. 312, pp. 148-175, 2005.
[71] Chung, C. F., Fabbri, A.G., “The representation of geoscience information for data intergration”, Nonrenewable Resources, Vol. 2(2), pp. 122-139, 1993.
[72] He, Y. P., Xie, A. H., Cui, A.P., Wei, A. F. Q., Zhong, A. D. L., Gardner, A. J. S., “GIS-based hazard mapping and zonation of debris flows in Xiaojiang Basin, southwestern China”, Environmental Geology, Vol. 45, pp.286-293, 2003.
[73] Carrara, A. M., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., “GIS techniques and statistical models in evaluating landslide hazard”, Earth Surface Processes and Landforms, Vol. 16, pp.427-445, 1991.
[74] Ayalew, L., Yamagishi, H., Ugawa, N., “Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan”, Landslides, Vol. 1, pp. 73-81, 2004.
[75] 張弼超,「運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例」,國立中央大學,碩士論文,民國94年。
[76] Duman, T. Y., Can, T., Gokceoglu, C., Nefeslioglu, H. A., Sonmez, H., “Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey”, Environmental Geology, Vol. 51, pp. 241-256, 2006.
[77] Arora, M. K., Das, Gupta, A. S., Gupta, R. P., “An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas”, International Journal of Remote Sensing, Vol. 25, pp. 559-572, 2004.
[78] 黃春明,「運用模糊類神經網路進行山崩潛感分析-以臺灣中部國姓地區為例」,國立中央大學,碩士論文,民國94年。
[79] Western van, C. J., Asch van, T. W. J., Soeters, R., “Landslide hazard and risk zonation—why is it still so difficult?”, Bulletin of Engineering Geology and the Environment, Vol. 65, pp. 167-184, 2006.
[80] Chung, C. F., Fabbri, A. G., “Validation of spatial prediction models for landslide hazard mapping”, Natural Hazards, Vol. 30, pp. 451–472, 2003.
[81] Kohavi, R. and Provost, F., “Glossary of terms”, Machine Learning, Vol. 30(2-3), pp. 271-274, 1998.
[82] Swets, J. A., “Is there a sensory threshold?”, Science, New Series, Vol. 134(3473), pp. 168-177, 1961.
[83] Swets, J. A., “Measuring the accuracy of diagonstic systems”, Science, Vol. 240(4857), pp. 1285-1293, 1988.
[84] Begueria, S., “Validation and evaluation of predictive models in hazard assessment and risk management”, Natural Hazards,Vol. 37, pp. 315-329, 2006.
[85] Rahardjo, H., Lim, T. T., Chang, M. F., Fredlund, D. G., “Shear strength characteristics of a residual soil”, Canadian Geotechnical Journal, Vol. 32, pp. 60-77, 1995.
[86] Richards, L. A., “Capillary conduction of liquids in porous mediums”, Physics, Vol. 1, pp. 318-333, 1931.
[87] 王如意,易任,應用水文學,初版,國立編譯館,臺北,民國92年。
[88] Tsai, T. L., Yang, J. C., Huang, L. H., “Hybrid finite-difference for solving the dispersion equation”, Journal of Hydraulic Engineering, Vol. 128(1), pp. 78-86, 2002.
[89] Iverson, R. M., “Landslide triggering by rain infiltration”, Water Resources Research, Vol. 36(7), pp. 1897–1910, 2000.
[90] 施國欽,「台灣地區沉積岩單壓強度初步研究」,岩盤工程研討會論文集,219-228 頁, 1994年。
[91] Chen, J. C., Jan, C. D., Lee, M. H., “Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length: theorem”, Environmental Geology, Vol. 51, pp. 1239-1248, 2007.
[92] Lumb, P., “The variability of natural soils”, Canadian Geotechnical Journal, Vol. 3, pp. 74-97, 1966.
[93] Oka, Y. and Wu, T. H., “System reliability of slope stability”, Journal of Geotechnical Engineering, Vol. 116(8), pp. 1185-1189, 1990.
[94] Venmarcke, E. H., “Reliability of earth slopes”, Journal of Geotechnical Engineering Division, Vol. 103(11), pp. 1227-1246, 1977.
[95] Chowdhury, R. N., Xu, D. W., “Rational polynomial technique in slope stability analysis”, Journal of Geotechnical and Geoenvironmental Engineering, Vol, 119(12), pp. 1910-1928, 1984.
[96] Christian, T. J., Ladd, C. C., Baecher, G. B., “Reliability and probability in stability analysis”, Stability and performance of slopes and embankments II, Seed, R. B. and Boulanger R. W. (Eds.), American Society of Civil Engineers, New York, Vol. 31, pp. 1071-1111, 1992.
[97] Mostyn, G. R. and Li, K. S., “Probabilistic slope analysis-state-of-play”, Proceedings of the conference on probabilistic methods in geotechnical engineering, pp. 89-110, Canberra, Australia, 1993.
[98] 許永佳,「水壩溢流之風險分析-以翡翠水庫為例」,國立台灣大學,碩士論文,民國91年。
[99] Harr, M. E., “Probabilistic estimates for multivariate analyses”, Applied Mathematical Modelling, Vol. 13, pp. 313-318, 1989.
[100] Haneberg, W. C., “Deterministic and probabilistic approaches to geologic hazard assessment”, Environmental and Engineering Geoscience, Vol. 6(3), pp. 209-226, 2000.
[101] Hahn, G. J. and Shapiro, S. S., Statistical models in Engineering, Wiley, New York, 1967.
[102] Ditlevsen, O. D., Uncertainty Modelling, McGraw-Hill, New York, 1981.
[103] 林士傑,「以Python整合有限元素商業軟體於重複性分析計算架構之開發:應用於結構可靠度」,國立台灣大學,碩士論文,民國93年。
[104] Rosenblueth, E., “Point estimates for probability moments”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 72(10), 1975.
[105] Rosenblueth, E., “Two point estimates in probabilities”, Applied Mathematical Modelling, Vol. 5, 1981.
[106] Bear, J., Dynamics of fluids in porous media, Dover, Mineola, New York, 1972.
[107] Hurley, D. G. and Pantelis, G., “Unsaturated and saturated flow through a thin porous layer on a hillslope”, Water Resources Research, Vol. 21, pp. 821–824, 1985.
[108] 陳本康,「石門水庫集水區崩塌特性及潛勢評估研究」,國立中興大學,博士論文,民國94年。
[109] Baum, R. L., Savage, W. Z., Godt, J. W., “TRIGRS—A fortran program for transient rainfall infiltration and grid-Based regional slope-stability analysis, version 2.0”, USGS Open-file Report 2008-1159, 2008.
[110] 謝翠萍,徐松圻,賴俊仁,「材料空間變異性對軟岩邊坡穩定之影響」,2006岩盤工程研討會,國立成功大學,台南市,2006年6月。
[111] Fechner, G. T., Element der psychophysik, Leipzig, Breitkopf and Harterl, 1860.
[112] McKay, M. D., “Sensitivity and uncertainty analysis using a statistical sample of input values”, Uncertainty Analysis, ed. By Ronen, Y., CRC Press, Inc., Boca Raton, FL, pp. 145-186, 1988.
[113] Iman, R. L. and Helton, J. C., “A comparison of uncertainty and sensitivity analysis technique for computer models”, Report NUREGICR-3904, SAND 84-1461, Sandia National Laboratories, Albuquerque, New Mexico, 1985.
指導教授 董家鈞(Jai-Jyun Dong) 審核日期 2009-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明