博碩士論文 87621016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.15.190.144
姓名 鄭孟勳(Meng-Hsun Cheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
(Physical properties of Poly(propylene-co-norbornene) Copolymer using Metallocene Catalyst)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 電致發光電池中電解質的結構與物性探討
★ 奈米二氧化鈦-固態複合高分子電解質★ 交聯型固態高分子電解質
★ 高分子固態電解質改進高分子發光二極體之光學特性研究★ 複合高分子電解質結構與電性之研究
★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性
★ 超分子發光二極體相容性、分子運動性與光性之研究★ 新穎質子交換膜
★ 原位聚合有機無機複合發光二極體 之分散性及光性研究★ 原位聚合固態電解質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(英) In our studies, the physical properties of poly(propylene-co-norbornene) COC copolymers were investigated which were synthesized using Metallocene catalyst (rac-bis(Ind)2EtZrCl2) and MAO as a co-catalyst. The crystalline and non-crystalline copolymers could be synthesized by different copolymerization procedures. First, the activity of copolymer dramatically decreases with increasing feeding norbornene amount, however, the activity increases with increasing copolymerization temperature. The glass transition temperature of copolymer is affected by two factors: the norbornene content in copolymer and the isotacticity of polypropylene. The microstructure of copolymer is mainly constituent with isolated and alternating norbornene sequence, which is not varied much with increasing norbornene content. Norbornene diades or longer norbornene block sequence probably exists in copolymer which is polymerized under higher reaction temperature. The equilibrium melting point is about 163oC which is determined by Hoffman-Weeks plot. No matter in isothermal or non-isothermal crystallization kinetics, the crystallization rate of isotactic polypropylene homopolymer is higher than copolymer, and the more norbornene content the lower crystallization rate will be obtained. Regime transition occurs in ipp homopolymer and copolymers, and the change in slope approaches about twofold. The fold surface energy(σe) and the work of chain folding(q) of copolymer is about 4-5 folds higher than homopolymer. Finally, the crystal form of polypropylene is stillα-form which is not varied with introducing norbornene unit in polymer chain or faster cooling rate.
關鍵字(中) ★ 原冰烯
★ 丙烯
★ 結晶動力學
★ 結晶
★ 結晶型
★ 微結構
關鍵字(英) ★ norbornene
★ propylene
★ crystallization kinetics
★ crystal
★ crystal form
★ mircrostructure
論文目次 表目錄
Table 4-1-4. Effect of copolymerization reaction confiditions on activity of npx series COC copolymer……………………………..61
Table 4-4-2. Effect of norbornene concentration on activity of nxp series COC copolymers and their molecular weight……………..62
Table 4-1-3. Molecular characteristics and thermal properties of ipp and nxp series COC copolymer. ………………………………63
Table 4-1-4. Effect of copolymerization temperature on activity of npRax series copolymer. ………………………………………….64
Table 4-1-5. Effect of norbornene concentration on activity of npRanx series COC copolymer. …………………………………...65
Table 4-1-6. Monomer reactivity ration of Metallocene catalyzed norbornene base copolymers………………………………66
Table 4-2-1. Molecular charactiristics and thermal properties of all smaples. …………………………………………………...85
Table 4-3-1. Molecular characteristics and thermal properties of all samples. ………………………………………………….117
Table 4-3-2. Avrami exponents of all samples. ………………………..118
Table 4-3-3. Overall crystallization rate (K) of all samples……………119
Table 4-3-4. Crystallization half time of all samples…………………..120
Talbe 4-3-5. Growth kinetics parameters based on nucleation theory…121
Table 4-4-1. Parameters of non-isothermal crystallization process of
ipp………………………………………………………...141
Table 4-4-2. Parameters of non-isothermal crystallization process of
n2p………………………………………………………..141
Table 4-4-3. Parameters of non-isothermal crystallization process of
n4p………………………………………………………..142
Talbe 4-4-4. Parameters of non-isothermal crystallization process of
n5p………………………………………………………..142
圖目錄
Figure 1-1. New uniform Metallocene catalyst family………………….12
Figure 2-1-1. F1 as function of f1 for the values of r1 indicated on the curves……………………………………………………..36
Figure 2-1-2. Calculated composition plots fore copolymer systems showing increasing tendency toward alternation………...36
Figure 2-1-3. Calculated composition plots for compolymization systems with r1=r2>1………………………………………………37
Figure 2-1-4. Calculated composition plots for copolymerization systems for r1=0.5 and varied r2 as shown………………………...37
Figure 2-1-5. Schematic representation of change in free energy for the nucleation process during polymer crystallzation………..38
Figure 2-1-6. Model of the growth of a lamellar polymer crystal through the successive laying down of adjacent molecular strands38
Figure 4-1-1. 3D plot of temperature and ratio([Al]/[Zr]) vs. activity of npx series COC copolymer……………………………….67
Figure 4-1-2. The variation of activity and Tg with NB content of nxp series COC copolymer……………………………………68
Figure 4-1-3. The relationship between melting point and NB content of nxp series COC copolymer……………………………….69
Figure 4-1-4. The variation of activity and Tg with reaction temperature of npRax series COC copolymer…………………………70
Figure 4-1-5. The variation of activity and Tg with NB content of npRanx series COC copolymer……………………………………71
Figure 4-1-6. F1(instantaneous copolymer composition) as a function of f1(feed mole fraction) of npRanx series copolymer……...72
Figure 4-2-1. 1D 13C-NMR spectrum of isotactic polypropylene………86
Figure 4-2-2. 1D 1H-NMR spectrum of copolymer npRan6…………...87
Figure 4-2-3. 1D 13C-NMR spectrum of npx series COC copolymer (np7)…………………………….. ………………………88
Figure 4-2-4. 1D 13C-NMR spectrum of nxp series COC copolymer (n2p) ……………………………………………………..89
Figure 4-2-5. 1D 13C-NMR spectrum of npRanx seires COC copolymers……………………………………………….90
Figure 4-2-6. DEPT-90 NMR spectrum showing only methine carbon resonances of COC copolymer npRan6………………….91
Figure 4-2-7. DEPT-135 NMR spectrum showing methyl, methine resonances as positive signals and methylene resonances as negative signals of COC copolymer……………………..92
Figure 4-2-8. 1D 1H-NMR spectrum of COC copolymers npRan6 and npRan7…………………………………………………..93
Figure 4-2-9. Heteronuclear multiple quantum coherence(HMQC) spectrum of COC copolymer npRan6……………………94
Figure 4-2-10. Heteronuclear multiple quantum coherence(HMQC) of COC copolymer npRan7………………………………..95
Figure 4-2-11. The homonuclear 1H-1H COSY spectrum of COC copolymer npRan6………………………………………96
Figure 4-2-12. The homonuclear 1H-1H COSY spectrum of COC copolymer npRan7………………………………………97
Figure 4-2-13. Heteronuclear multiple bond coherence spectrum of COC copolymer npRan7………………………………………98
Figure 4-2-14. Peak assignment of iPP-co-PNB COC copolymer……...99
Figure 4-2-15. 1D 13C-NMR spectrum of npRax series COC copolymer……………………………………………...100
Figure 4-3-1. Changes of relative degree of crystallinity Xc with time of ipp and n2p. …………………………………………….122
Figure 4-3-2. Changes of relative degree of crystallinity Xc with time of n4p and n5p. ……………………………………………123
Figure 4-3-3. Avrami plot of ipp and n2p with different crystallization temperatures. …………………………………………...124
Figure 4-3-4. Acrami plot of n4p and n5p with different crystallization temperatures…………………………………………….125
Figure 4-3-5. Overall crystallization rate of all samples at different crystallization temperatures. ……………………………126
Figure 4-3-6. Effect of crystallization temperatures on half time of all samples………………………………………………….127
Figure 4-3-7. Effect of norbornene content on half time at different crystallization temperatures……………………………..128
Figure 4-3-8. Hoffman-Weeks plot of all samples. …………………...129
Figure 4-3-9. DSC thermograms of melting of ipp after isothermal crystallization at different Tc….. ……………………….130
Figure 4-3-10. DSC therograms of melting of n5p after isothermal crystallization at different Tc……………………………131
Figure 4-3-11. Lauritzen-Hoffman plot of all samples………………...132
Figure 4-3-12. The variation of σe and q with NB content…………..133
Figure 4-4-1. The relationship between relative crystallinity and temperature at different cooling rate……………………143
Figure 4-4-2. The relationship between relative crystallinity and temperature at different cooling rate……………………144
Figure 4-4-3. The variation of relative crystallinity with crystallization time at different cooling rate……………………………145
Figure 4-4-4. The variation of relative crystallinity with crystallization time at different cooling rate……………………………146
Figure 4-4-5. DSC thermograms of ipp and 2p at different cooling rate………………………………………………………147
Figure 4-4-6. DSC thermograms of n4p and n5p at different cooling rate…………….. ……………………………………….148
Figre 4-4-7. DSC melting curves of ipp and n2p after non-isothermal crystallization…………………………………………..149
Figure 4-4-8. DSC melting curves of n4p and n5p after non-isothermal crystallization…………………………………………..150
Figure 4-4-9. X-ray diffraction patterns of ipp at different cooling rate. …………………………………………………….151
Figure 4-4-10. X-ray diffraction pattern of n4p at different cooling rate………………………………………………………152
參考文獻 1. Gordon, M.; Hillier, I. H. Phil. Mag., 1965, 11, 31.
2. Velisaris, C. N.; Fisher, J. C. J. Chem. Phys., 1986, 17, 71.
3. Jain, N. L. Makromol. Chem., 1971, 142, 293.
4. Wunderlich, B.; Mehta. A. J. Polym. Sci., 1974, 12, 255.
5. Wunderlich, B.; Mehta. A. J. Coll. Polym. Sci., 1975, 253, 193.
6. Keith. H. D. Kolloid. Z. Z., 1969, 231, 421.
7. Hillier. I. H. J. Polym. Sci.: Part A, 1965, 6,231.
8. Keith. H. D., Padden, F. J. J. Appl. Phys., 1963, 34, 2409. 1964, 1270, 1286.
9. Gordon, M.; Hillier,J. H. Polymer, 1965, 6, 213.
10. Wunderlich, B. in Macromolecular Physics, Vol. 2, Ch. 6, Academic Press, New York, 1976.
11. Arroyo, M.; Lopez-Manchado, M. A. Polymer, 1997, 38, 5587.
12. Marker, L.; Hay, P. M.; Tilley, Early, G. P. R. M. and Sweeting, O. J. J. Polym. Sci., 1959, 38, 33.
13. Griffith, J. H.; Ranby, B. J. Polym. Sci., 1959, 38, 107.
14. Mandelkern, L. Crystallization of Polymers. McGraw-Hill, New York 1964.
15. J. H. Griffith and B. Ranby, J. Polym. Sci., 38, 107 (1959).
16. Varga. J. J. Mater. Sci., 1992, 27, 2557.
17. Pae, K. D. J. Poylm. Sci. Part A-2, 1968, 6, 657.
18. Pae, K. D.; J. A. Sauer, J. Polym. Sci. 1968, 12, 1908.
19. Samuels, R, J. J. Appl. Polym. Sci. 1975, 13, 1417.
20. Yadav, Y. S.; Join. P. C. Polymer, 1986, 27, 721.
21. Bogoeva-Gaceva, G.; Janevski, A.’ Grozdanov, A. J. Appl. Polym. Sci., 1998, 67, 395.
22. Alwattari, A. A.; Lloyd. D. R. Polymer, 1998, 39, 1129.
23. Wang, Y. F,; Lloyd, D. R. Polymer, 1993, 34, 2324.
24. Flory, P. J.; McIntyre, A. D. J. of Polym. Sci., 1995, 18, 590.
25. Morgan, L. B.; Lester, G. R.; Keller, A.; Hartley, F. D.; and Lord, F. W. Transactions of the Royal Society, London, 1954, A921, 1.
26. Clark, E. J.; Hoffman, J. D. Macromolecules, 1984,17, 878.
27. Hoffman, J. D.; Miller, R. L. Macromolecules, 1989, 22, 3505.
28. Hoffman, J. D.; Dacis,G. T.; and Hoffman, J. I. In Treatise on Solid State Chemistry, ed. H. B. Hannay, Plenum: New York, Chapter 7 1975.
29. Roitman, D. B.; Marand, H. R.; Miller, L; Hoffman, J. D. J. Phys. Chem., 1989, 93, 6929.
30. Lovinger, A. J. D.; Davis, D.; Padden, F. J. Polymer, 1985, 26, 1595.
31. Devoy, C.; Mandelkern, L. Bourland, L. J. Polym. Sci.: Part A-2, 1970, 2, 869.
32. Carvalho, B. D.; Bretas, R. E. S. J. Appl. Polym. Sci., 1998, 68, 1159.
33. .K. Godowsky and G. L. Slovonimsky, J. Poly. Sci., 1974, 12, 1053.
34. E. Martuscelli, C. Silvestre, and G. Abote, Polymer, 1982, 23, 229.
35. Anevski, A.; gaceva, B. J. Appl. Polym. Sci., 1998,69.381.
36. Lauritzen, J. I.; Hoffman, J. D. J. Res Natl. Bur. Stand., 1960, 64A, 73.
37. Hoffman, J. D.; Dacis, G. T.; Hoffman,J . I. In Treatise on Solid State Chemistry, ed. H. B. Hannay, Plenum: New York, Vol. 3, 1975.
38. Hoffman, J. D.; Miller, R. L. Macromolecules, 1989, 22, 3502.
39. Hoffman, J. D. R.; Miller, L. Macromolecules, 1988, 21, 3038.
40. Magill, J. H.; J. Polym. Sci., Part A-2, 1967, 5, 9.
1. Kaminsky, W.; Bark, A.; Arndy, M. Makromol. Cehm., Macromol. Symp., 1991, 47, 83.
2. Kaminsky, W.; Noll, A. Polym. Bull. 1993, 31, 175.
3. Kaminsky, W.; Arndy, M.; Beulich, I. Polym. Mater. Sci. Eng., 1997, 76, 18.
4. Ruchatz, D.; Fink, G. Macromolecules, 1998, 31, 4681.
5. Kaminsky., W.; Engehausen, R. Kopf, J. Angew. Chwm., Int. Ed. Engl., 1995, 34, 2273.
6. Arndy, M.; Engehausen, R.; Kaminsky, W.; Zoumis, K. J. Mol. Catal. A: Chem., 1995, 101, 171.
7. Arndt, M.; Kaminsky, W. Macromol. Symp., 1995, 97, 225.
8. Bergstrom, C. H.; Vaananen, T. L. J.; Seppala, J. V. J. Appl. Polym. Sci., 1997, 63,1071.
9. Ewen, J.; Jones, R.; Razavi, A.; ferrara, J. D. J. Am. Chem. Soc., 1998, 110, 6255.
10. Ewen, J. A.; Elder, M. J.; Jones, R. L. In Catalytic Olefin Polymerization; Keiei, T.; Soga, K., Eds.; Kodansha: Tokyo, 1990, 439.
11. Mcknight, A. L.; Waymouth, R. M. Macromolecules, 1999, 32, 2816.
12. Ruchatz, D.; Fink, G. Macromolecules, 1998, 31, 4674.
13. Kaminsky, W.; Bark, A.; Dake, I. Polymerization of Cyclic Olefins with Homogeneous Catalysts. In Catalytic Olefin Polymerization; Soga, K., Keii, T., Eds.; Kodansha: Tokyo.1990.
14. Kaminsky, W.; Bark, A.; Arndy, M. Makromol. Chem., Macromol. Symp., 1991, 47, 83.
15. Bark, A. Dissertation, Universitat Hamburg, Germany, 1990.
16. Arndy, M. Dissertation, Universitat Hamburg, Germany, 1994.
17. Bergstrom, C. H.; Sperlich, B. R.; Ruotoistenmaki, J. J. Polm. Sci. A, 1998,36, 1633.
18. Arndt, M.; Beulich, I.; Kamisky, W. Worldwide Metallocene Conference, Houstn, Tx, 1996.
19. Marker, L.; Hay, P. M., Tilley, G. P.; Early, R. M.; Sweeting, O. J. J Polym. Sci., 1959, 38, 33.
20. Janimak, J. J.; Cheng, S. Z. D.; Giusti, A. Macromolecules, 1991, 24, 2253.
21. Chiu, F. C.; Fu, Q.; Hsieh, E. T. J. Polym. Res, 1999, 6, 219.
22. Carroll, C. C. Modern Plastics, September, 1984, 108.
23. Kuhre, C. J.; Wales, M.; Doyle, M. E. SPE J., October, 1964, 1113.
24. Ianevski, A.; Gaceva, G. J. app. Polym. Sci., 1998, 69, 381.
25. Gordon, B. A.; Douglas, R. L. Polym. Eng. Sci., 1993, 33, 513.
26. Hoffman, J. D.; Lauritzen, J. I. Jr., J. Res. Nat. Bure. Std.:Ser. A, 1961, 4, 315.
27. Hoffman, J. D. SPE Trans., 1964, 4, 315.
28. Lauritzen, J. I. Jr.; Hoffman, J. D. J. Appl. Phys., 1973, 44, 4340.
29. Devoy, C.; Mandelkern, L.; Bourland, L. J. Polym. Sci.: Part A-2, 1970, 869.
30. Runt, J.; Miley, D. M. Macromolecules, 1992, 25, 1929.
31. Hoffman, J. D.; Miller, R. L. Macromolecules, 1989, 22, 3502.
32. Hoffman, J. D. ; Miller, R. L. Macromolecules, 1988, 21, 3038.
33. Lovinger, A. J. D.; Davis, D.; Padden, F. J. Polymer, 1985, 26, 1595.
34. Hoffman, J. D.; Dacis, G. T.; Hoffman,J . I. In Treatise on Solid State Chemistry, ed. H. B. Hannay, Plenum: New York, Vol. 3, 1975.
35. Arroyo, M.; Lopez-Manchado, M. A. Polymer, 1997,38, 5587.
36. Beck, H. N. J. Polym. Sci.: Part A-2, 1966, 4, 631.
37. Padden, F. J.; Heith, H. D. J. Appl. Phys. 1959, 30, 1479.
38. Keith, H. D.; Padden, F. J.; Wyckoff, H. W. J. Appl. Phys., 1959, 30, 1485.
39. Meille, S. V.; Bruckner, S.; Porzio, W., Macromolecules, 1990, 23, 4114.
40. Nakafuku, C. Polymer, 1981, 22, 1673.
41. Turner-Jones, A.; Aizlewood, J. M.; Beckett, D. R. Macromol. Chem., 1964, 75, 134.
42. Fujiwara, Y. Colloid Polym. Sci., 1955, 253, 273.
43. Varga, J. Schulek-Toth, F.; Mudra, I. Macromol. Symp., 1994, 78, 229.
44. Muschik, H.; dragaun, H. Progr. Colloid Polym. Sci., 1979, 66, 319.
45. Wenig, W.; Herzog, F. J Appl. Ploym. Sci., 1993, 50, 2163.
46. Thompson, J. L.; Rooyen, A. A. J. Mater. Sci., 1992, 27, 889.
47. Bofoeva, G.; Janevski, A.; grozdanov, A. J. Appl. Polym. Sci., 1998, 67, 395. Guerra, G.; Petraccone. V. J. polym. Sci. Polym. Phys. Ed. 1984,22, 1029.
1. An, Y.; Dong, L.; Mo, Z.; and Feng, Z. J. Polym. Sci. Part B, 1998, 36, 1305.
2. Cebe, P.; Hong, S. D. Polymer, 1986, 27, 1183.
3. Clark, E. J.; Hoffman. J. D. Macromolecules, 1984, 17, 878.
4. Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I., Jr. In “Treatise on Solid State Chemistry”; Hannay, N. b., Ed.; Plenum Press: New York, 1976; Vol. 3, Chapter 7.
5. Hoffman, J. D. Polymer, 1983, 24, 3.
6. Griffith, J. H.; Ranby, B. G. J. Polym. Sci., 1959, 38, 107.
7. Lim, G. B. A.; Lloyd. D. R. Polym. Eng. and Sci. 1993, 33, 529.
8. Muzzy, J. D.; Bright, D. G.; and Hoyos, G. H. Polym. Eng. Sci. 1978, 18, 437.
9. Varga. J. J. Mater. Sci., 1992, 27, 2557.
10. Pae, K. D. J. Poylm. Sci. Part A-2, 1968, 6, 657.
11. Pae, K. D.; J. A. Sauer, J. Polym. Sci. 1968, 12, 1908.
12. Samuels, R, J. J. Appl. Polym. Sci. 1975, 13, 1417.
13. Yadav, Y. S.; Join. P. C. Polymer, 1986, 27, 721.
14. Guerra, G.; Petraccone. V. J. polym. Sci. Polym. Phys. Ed. 1984,22, 1029.
15. Guerra, G.; Petraccone. V.; Tuzu, A. Macromolecules, 1985, 18, 813.
16. Guerra, G.; Petraccone. V.; Tuzu, A. Macromol. Chem. Rapid Commun. 1984, 5, 631.
17. Gaceva, G. B.; Janevski, A. Grozdanov, A. J. Appl. Polym. Sci. 1998, 67, 359.
18. Padden, F. J.; Heith, H. D. J. Appl. Phys. 1959, 30, 1479.
19. Keith, H. D.; Padden, F. J.; Wyckoff, H. W. J. Appl. Phys., 1959, 30, 1485.
20. Meille, S. V.; Bruckner, S.; Porzio, W., Macromolecules, 1990, 23, 4114.
21. Nakafuku, C. Polymer, 1981, 22, 1673.
22. Turner-Jones, A.; Aizlewood, J. M.; Beckett, D. R. Macromol. Chem., 1964, 75, 134.
23. Fujiwara, Y. Colloid Polym. Sci., 1955, 253, 273.
24. Varga, J. Schulek-Toth, F.; Mudra, I. Macromol. Symp., 1994, 78, 229.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2000-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明