博碩士論文 88322064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.149.239.70
姓名 何家榮(Jia-Rong He )  查詢紙本館藏   畢業系所 土木工程研究所
論文名稱 圓錐貫入試驗中土壤音壓之研究
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 超載對打設排水帶後軟弱地盤壓密行為之影響
★ 山岳隧道湧水處理之研究★ 砂土中基樁側向位移之改良研究
★ 水泥混合處理砂質土壤液化特性之改良研究★ 扶壁改善深開挖擋土壁體變形行為之研究
★ 微音錐應用於土壤音射特性之研究★ 黏性土壤受定量擠壓變形後之力學行為
★ 黏土中短樁側向位移之改良研究★ 砂土經水泥改良後之力學性質
★ 黏土中模型樁側向位移之改良研究★ 黏土中基樁側向位移改良之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統的圓錐貫入試驗可量測錐尖阻抗、袖管摩擦力及孔隙水壓等數據。然而,在土壤層面處,錐尖阻抗無法正確地量測,因此無法準確偵測出土壤層面的位置。本研究在錐尖內部加裝一微音器,擷取圓錐在貫入過程中產生之音波,利用微震音放射之高敏感度,探討砂土之音波特性與錐尖阻抗之關係。
本研究使用一大型剛性土槽進行一系列之室內試驗,採用移動式霣降儀製作試體,對試體施加一預定之氣壓,並以等速率貫入方式進行微音錐貫入試驗。針對砂土於不同相對密度與垂直應力之條件,探討音波反應、錐尖阻抗在貫入過程之變化。
針對不同相對密度與垂直應力之各組試驗,相對密度或垂直應力愈大,所得之錐尖阻抗愈大。而由微震音放射計算所得之方均根音壓亦隨相對密度或垂直應力之增加而變大。
頻譜分析中,各組試驗之主要頻率約為2.3kHz,音壓約在0.1?0.2Pa之間,此二特性對本研究之砂土具有代表性。音射分析中,音射速率隨相對密度、垂直應力增加而增大。
摘要(英) Cone penetration tests can measure tip resistance, sleeve friction, and pore water pressure. However, the magnitude of tip resistance cannot be measured correctly at the interface of soil layer, and the position of this interface can not be detected accurately. This research installed a mini microphone in the cone tip to measure the sound wave in the process of penetration. By using this high sensitive acoustic emission, the relationships between acoustic characteristics and tip resistance of sand were investigated.
This research used a large steel tank and an acoustic cone to carry out a series of laboratory cone penetration tests. The specimens were made by a movable sand pluviator. Constant pressures were applied on the sand specimens, and then penetrated the cone into the specimens with a constant speed. Under the conditions of different relative densities of sand and different vertical pressures, the variations of acoustic emission and tip resistance during the penetration were investigated.
From the experimental results, it is understood that the tip resistance increased with the relative densities and vertical pressures. The root mean square values of sound pressure which were obtained from the calculation of acoustic emission, and the values of sound pressure also increased with the relative densities and vertical pressures.
In frequency analysis, the major frequency of each test is about 2.3kHz, and it’s sound pressure is about 0.1~0.2Pa, these properties can represent the speciality of the sand which is used in this research. In acoustic emission analyses, the rate of AE count increased with the relative densities and vertical pressures.
關鍵字(中) ★ 圓錐貫入阻抗
★  微震音放射
★  方均根音壓
關鍵字(英) ★ cone resistance
★  RMS sound pressure
論文目次 目錄
內容頁次___________________________________________________________
中文摘要I
英文摘要II
目錄III
圖目錄VII
表目錄XI
符號說明XII
第一章 緒論1
1.1研究動機與目的1
1.2研究方法1
1.3論文內容2
第二章 文獻回顧3
2.1圓錐貫入試驗3
2.1.1發展歷史3
2.1.2理論基礎4
2.1.2.1承載力理論4
2.1.2.2孔穴擴張理論7
2.1.2.3應變路徑法9
2.1.2.4 DEM-BEM數值模擬法9
2.1.3圓錐貫入試驗之影響因素10
2.1.4圓錐貫入試驗之應用12
2.2標度槽之發展與應用15
2.2.1標度系統之改良發展15
2.2.2標度砂土試體製作16
2.2.3標度試體邊界條件控制17
2.2.4邊界條件之影響17
2.2.5標度槽邊界效應之影響18
2.3音波於大地工程之應用19
2.3.1音波的基本性質19
2.3.2音射之基本原理19
2.3.3音射之應用20
2.3.3.1音射檢測技術20
2.3.3.2音射於土壤力學上之應用21
2.3.4微音錐貫入試驗之發展21
2.3.5微音錐貫入試驗之影響因素22
2.3.6校正噪音之影響23
2.3.6.1背景噪音之影響與校正23
2.3.6.2機械噪音的影響與濾除24
第三章 試驗土樣、儀器設備及試驗方法43
3.1試驗土樣43
3.2試驗儀器及相關設備43
3.2.1反力式圓錐貫入設備43
3.2.2微音錐貫入儀44
3.2.3剛性壓力式圓筒形土槽45
3.2.3.1壓力室配置45
3.2.3.2加壓設備45
3.2.4錐尖阻抗擷取儀器46
3.2.5音波量測與檢核儀器46
3.2.5.1電容微音器47
3.2.5.2迷你前置放大器47
3.2.5.3電源供應器48
3.2.5.4資料擷取系統49
3.2.5.5精密音壓計49
3.2.6移動式霣降儀49
3.3試驗方法與原理50
3.3.1砂土最大與最小乾密度50
3.3.1.1最大乾密度50
3.3.1.2最小乾密度51
3.3.2試體製作51
3.3.3砂土貫入試驗52
3.3.4試體相對密度的檢核52
3.4音波信號處理53
3.4.1信號處理之取樣定理53
3.4.2快速傅立葉轉換54
3.4.3方均根音壓與聲音振幅之換算55
3.4.4音射之計數56
第四章 試驗結果與分析68
4.1前導試驗68
4.1.1微音錐之電壓與實際音壓的關係69
4.1.2背景噪音敏感度測試69
4.1.3決定機械噪音濾除之頻率70
4.2錐尖阻抗之探討70
4.2.1不同相對密度之試驗結果70
4.2.2不同垂直應力之試驗結果70
4.2.3試驗結果之探討71
4.3方均根音壓之探討72
4.3.1不同相對密度之試驗結果72
4.3.2不同垂直應力之試驗結果73
4.3.3試驗分析結果之探討73
4.4頻譜分析74
4.5音射速率74
第五章 結論與建議89
5.1結論89
5.2建議90
參考文獻91
圖 目 錄
圖別說明 頁次__________________________________________________________
圖2.1(a) Delft 機械式貫入錐27
圖2.1(b) Begemann 機械式摩擦貫入錐27
圖2.2(a) Delft 電子式貫入錐28
圖2.2(b) Fugro 電子式摩擦貫入錐28
圖2.3 各式水壓錐29
圖2.4 承載力理論破壞區域示意圖29
圖2.5 孔穴擴張示意圖30
圖2.6 擴張因子對照圖30
圖2.7 60°圓錐貫入後周圍土壤之變形31
圖2.8 應變路徑法流程圖32
圖2.9 DEM-BEM數值模擬示意圖33
圖2.10 DEM-BEM連結系統33
圖2.11 CPT之土壤分類圖34
圖2.12 圓錐參數Nk與塑性指數對應圖35
圖2.13 估計粘土層OCR值對應圖35
圖2.14 平均qc值之求法36
圖2.15 土層液化評估分類圖37
圖2.16 應變影響因素37
圖2.17 固定式霣落儀38
圖2.18 具中空壁設計之標度槽38
圖2.19 標度槽與現地應力狀況的差異39
圖2.20 標度槽之尺寸與邊界效應39
圖2.21 土壤受剪之聲射特性和破壞模式之關係40
圖2.22 ACPT貫入儀40
圖2.23 圓錐貫入速度對音波的影響41
圖2.24 砂土飽和度對貫入音波的影響41
圖2.25 背景噪音校正圖42
圖3.1 福隆砂粒徑分布曲線58
圖3.2 圓錐貫入儀組合圖58
圖3.3 反力座支撐設備與齒輪傳動設備59
圖3.4 微音錐貫入儀內部構造圖59
圖3.5 剛性壓力室圓筒形土槽60
圖3.6 資料擷取系統60
圖3.7 微音錐貫入音波量測流程圖61
圖3.8 微音器之規格與外觀62
圖3.9 電源供應器外觀圖62
圖3.10 精密音壓計63
圖3.11 移動式霣降儀64
圖3.12 最大、最小乾密度試驗之儀器65
圖3.13 原始輸入之正弦波﹐(頻率﹦fa)66
圖3.14 取樣頻率(fs=2fa)66
圖3.15 取樣頻率(fs<2fa)66
圖3.16 取樣頻率(fs>>2fa)67
圖3.17 交疊現象產生頻帶重疊之頻譜圖67
圖3.18 無交疊現象之頻譜圖67
圖4.1 比較裸微音器與微音錐對音波之反應75
圖4.2 微音錐與裸微音器之電壓比較圖75
圖4.3 機械噪音之頻譜分布76
圖4.4 錐尖阻抗與深度關係(σv ﹦50kPa)77
圖4.5 錐尖阻抗與深度關係(Dr = 30%)77
圖4.6(a) 錐尖阻抗與垂直應力關係圖78
圖4.6(b) Tringale飽和砂土試體之試驗78
圖4.7(a) 試驗與Jamiolkowski經驗公式比較圖(σv ﹦50kPa)79
圖4.7(b) 試驗與Jamiolkowski經驗公式比較圖(Dr = 30%)79
圖4.8(a) 方均根音壓與深度關係(Dr = 30%;σv ﹦50kPa)80
圖4.8(b) 方均根音壓與深度關係(Dr = 40%;σv ﹦50kPa)81
圖4.8(c) 方均根音壓與深度關係(Dr = 50%;σv ﹦50kPa)81
圖4.8(d) 方均根音壓與深度關係(Dr = 60%;σv ﹦50kPa)82
圖4.9 方均根音壓與相對密度之關係圖(σv ﹦50kPa)83
圖4.10(a) 方均根音壓與深度關係(Dr = 30%;σv ﹦100kPa)83
圖4.10(b) 方均根音壓與深度關係(Dr = 30%;σv ﹦150kPa)84
圖4.11 方均根音壓與垂直應力之關係圖(Dr = 30%)85
圖4.12(a) 錐尖阻抗與方均根音壓之關係圖85
圖4.12(b) 平均粒俓與音波電壓值之關係圖86
圖4.13 Villet錐尖阻抗與方均根電壓之關係圖86
圖4.14(a) 頻譜分布圖(Dr = 30%﹐σv ﹦50kPa)87
圖4.14(b) 頻譜分布圖(Dr = 40%﹐σv ﹦50kPa)87
圖4.14(c) 頻譜分布圖(Dr = 50%﹐σv ﹦50kPa)87
圖4.14(d) 頻譜分布圖(Dr = 60%﹐σv ﹦50kPa)88
圖4.14(e) 頻譜分布圖(Dr = 30%﹐σv ﹦100kPa)88
圖4.14(f) 頻譜分布圖(Dr = 30%﹐σv ﹦150kPa)88
圖4.15(a) 不同計數低限值之相對密度與音射速率關係89
圖4.15(b) 不同計數低限值之垂直應力與音射速率關係89
表 目 錄
表次 說明 頁次_______________________________
表2.1 不同樁體材質參數對照表25
表2.2 用於大地工程研究上之標度槽25
表2.3 標度槽試驗加載之邊界條件26
表2.4 背景噪音校正表26
表3.1 福隆砂之基本性質57
表3.2 量測系統特性57
表3.3 不同相對密度之霣降條件57
參考文獻 參 考 文 獻
1.土質工學會,土質試驗法,日本土質工學會,第172-188頁(1979)。
2.王啟川、郭弘政,數位信號處理,全華科技圖書股份有限公司,臺北 (1989)。
3.李延恭,「淺談貫入試驗之應用及發展」,地工技術雜誌,第16期,第4?13頁(1986)。
4.洪兆慶,「音波式圓錐貫入試驗與砂土參數相關性之研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1997)。

5.徐萬樁,噪音與振動控制,協志工業叢書,臺北 (1984)。
6.梁能,「圓錐貫入試驗中土壤微震音之量測」,碩士論文,國立中央大學土木工程學系,中壢 (1997)。

7.陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢 (1999)。

8.秦中天,「電子式兼測水壓貫入錐的應用」,地工技術雜誌,第16期,第23?31頁(1986)。
9.莊傳業,「微震音放射在圓錐貫入試驗中之應用」,碩士論文,國立中央大學土木工程學系,中壢 (1996)。

10.許懷後、黃安斌,「砂土中圓錐貫入試驗之理論基礎」,第六屆大地工程學術研究討論會論文集,嘉義,第376?384頁(1995)。
11.郭鑑智、曾俊傑、費立沅、左天雄,「貫入試驗評估靜止土壓力係數之研究」,第六屆大地工程學術研究討論會論文集,嘉義,第1?10頁(1995)。
12.陳斗生,「電子式圓錐貫入儀之工程應用」,地工技術雜誌,第13 期,第62?76頁(1986)。
13.陳東敏、楊朝欽、林冠平、彭國賢,數位信號處理導論,全華科技圖書股份有限公司,臺北 (1999)。
14.黃安斌、龔浩然,「圓錐貫入試驗在室內之標定」,第五屆大地工程學術研究討論會論文集,臺北,第421?426頁(1993)。
15.黃建民,「音波式圓錐貫入試驗於土層界面判定之應用」,碩士論文,國立中央大學土木工程學系,中壢 (2000)。

16.歐志忠,「黏性土壤中柱體側向抵抗與評估方法之研究」,碩士論文,國立中央大學土木工程研究所,中壢(1991)。

17.蘇德勝,噪音原理及控制,臺隆出版社,臺北(1991)。
18.Acar, Y.B. and Tumay, M.T., “Strain field around cones in steady penetration,” Journal of Geotechnical Engineering, ASCE, Vol. 112, No.2, pp.207-213 (1986).
19.Anderson, W.F. and Pyrah, I.C., “Pressuremeter testing in a clay calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.55-66 (1991).
20.Baldi, G., R. Belotti, V. Ghionna, M. Jamiolkowski, and E. Pasqualini, “Design parameters for sands from CPT,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, ESOPT-Ⅱ, pp.425-432 (1982).
21.Baligh, M.M., “Cavity expansion in sands with curved envelopes,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT11, pp.1131-1146 (1976).
22.Baligh, M.M., “Strain path method,” Journal of Geotechnical Engineering, Vol.111, No.9, pp.1108-1136 (1985).
23.Been, K., Crooks, J.H.A., Becker, D.E. and Jefferies, M.G., “The cone penetration test in sands : part I, state parameter interpretation,” Geotechnique, Vol.36, No.2, pp.239-249 (1986).
24.Borden, R.H., “Boundary displacement induced by DMT penetration,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.101-118 (1991).
25.Brandon, T.L. and G.W. Clough, “Methods of sample fabrication in the Virginia Tech calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.119-133 (1991).
26.Campanella, R.G and Robertson, P.K., “Current status of the piezocone test,” Proceedings of the First International Symposium on Penetration Testing/ISOPT1, J. De Ruiter, Ed., Orlando, Florida, pp.93-116 (1988).
27.Carter, J.P., Booker, J.R., and Yeung, S.K., “Cavity expansion in cohesive frictional soils,” Geotechnique, Vol.36, No.3, pp.349-358 (1986).
28.Chen, J.W. and Juang, C.H., “Determination of drained friction angle of sands from CPT,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 5, pp.374-381 (1996).
29.De Ruiter, J., “Electric penetrometer for site investigations,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, SM2, pp.457-472 (1971).
30.Douglas, B.J. and Olsen, R.S., “Soil classification using electric cone penetrameter,” Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, Oct. , St. Louis, pp. 209-227 (1981).
31.Durgunoglu, H.T. and Mitchell, J.K., “Static penetration resistance of soils,” Proceedings of ASCE Specialty Conference on In-situ Measurement of Soil Parameters, Raleigh, Vol.1, pp.151-189 (1975).
32.Ghionna, V.N. and Jamiolkowski, M., “A critical appraisal of calibration chamber testing of sands,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.13-40 (1991).
33.Holden, J.C., “History of the first six CRB calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.1-12 (1991).
34.Holden, J.C., “Laboratary research on static cone penetrometers,” University of Florida, Gainsville, Department of Civil Engineering, Internal Report, CE-SM-71-1 (1971).
35.Houlsby, G.T. and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
36.Huang, A.B. and Ma, M.Y., “An analytical study of cone penetration testsin granular material, ” Canadian Geotechnical Journal, Vol. 31, No. 1, pp.91-103 (1994)。
37.Jamiolkowski, M. et. al, “New developments in field and laboratory testing of soils,” Theme Lecture, 11th Int. Conf. On Soil Mechanics and Foundation Engineering, San Francisco, pp. 57-154(1985).
38.Koerner, R.M. and Lord, A.E., Jr., “Acoustic emissions in medium plasticity clayey silt,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM1, pp.161-165 (1972).
39.Koerner, R.M. and Lord, A.E., Jr., “Subsurface soil monitoring via acoustic emissions,” Use of In Situ tests in Geotechnical Engineering: Proceedings of In Situ '86, Specialty Conference, Samuel P. Clemence, Ed., ASCE, pp.176-190 (1986).
40.Koerner, R.M., Lord, A.E., Jr., and McCabe, W.M., “Acoustic emission behavior of cohesive soils,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT8, pp.837-850 (1977).
41.Koerner, R.M., Lord, A.E., Jr., McCabe, W.M., and Curran, J.W., “Acoustic emission behavior of granular soils,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 122, No. GT7, pp.761-773 (1976).
42.Koerner, R.M., McCabe, W.M., and Lord, A.E., Jr., “Acoustic Emission Behavior and Monitoring of Soils,” Acoustic Emissions in Geotechnical Engineering Practice, ASTM STP 750, V. P. Drnevich and R. E. Gray, Eds., American Society for Testing and Materials, pp.93-141 (1981).
43.Kulhawy, F.H., Mayne, P.W., “Manual on estimating soil properties for foundation design,” Rpt. EL-6800, Elec. Power Res. Inst.,Palo Alto, pp.306 (1990).
44.Levadoux, J.N. and Baligh, M.M., “Consolidation after undrained piezocone penetration. I: prediction, II: interpretation,” Journal of Geotechnical Engineering, ASCE, Vol.112, No.7, pp707-745 (1986).
45.Lunne, T., “Practical use of CPT correlations in sand based on Calibration chamber tests,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.225-235 (1991).
46.Lunne, T., Eidsmoen, T., Gillespie D., and Howland J.D., “Laboratory and field evaluation of cone penetrometers,” Use of In Situ tests in Geotechnical Engineering: Proceedings of In Situ '86, Specialty Conference, Samuel P. Clemence, Ed., ASCE, pp.714-729 (1986).
47.Massarsch, K. R., “Acoustic penetration testing,” Proceeding of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore(1986).
48.Mayne, P.W. and Kulhawy, F.H., “Calibration chamber database and boundary effects correction for CPT data,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.257-264 (1991).
49.Mayne, P.W., “Tentative method for estimating σ’h0 from qc data in sands,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.249-256 (1991).
50.Meigh, A.C., Cone penetration testing: methods and interpretation, CIRIA ground engineering report: in-situ testing, Butterworths, London (1987).
51.Muromachi, T., “Phono-sounding apparatus-discrimination of soil type by sound,” Proceedings of the First European Symposium on Penetration Testing, Amsterdam, ESOPT-Ⅰ, Vol. 21, pp.110-112 (1974).
52.Olson, S.M. and T.D. Stark,, “CPT based liquefaction resistance of sandy soils,” Geotechnical Special Publication, ASCE, Vol. 1, pp.325-333(1998)。
53.Parkin, A.K. and T. Lunne, “Boundary Effects in the Laboratory Calibration of a Cone Penetrometer for Sand,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, ESOPT-Ⅱ, pp.761-768 (1982).
54.Parkin, A.K., “The calibration of cone penetration,” Proceedings of the First International Symposium on Penetration Testing/ISOPT1, J. De Ruiter, Ed., Orlando, Florida, pp.221-243 (1988).
55.Peterson, R.W., “Penetration resistance of fine cohesionless materials,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.315-328 (1991).
56.Robertson, P.K. and Campanella, R.G., “Interpretation of cone penetration tests,” Canadian Geotechnical Journal, No. 20, pp.718-745 (1983).
57.Robertson, P.K. and Campanella, R.G., “Liquefaction potential of sands using the CPT,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No.3, pp.384-403(1985).
58.Robertson, P.K., “In situ testing and its application to foundation engineering,” Canadian Geotechnical Journal, No.23, pp.573-594(1986).
59.Robertson, P.K., “Soil classification using the cone penetration test,” Canadian Geotechnical Journal, No. 27, pp.151-158 (1990).
60.Salgado, R., Mitchell, J.K. and Jamiolkowski, M., “Cavity expansion and penetration resistance in sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.4, pp.344-354 (1997).
61.Schmertmann, J. H.,“Guidelines for cone penetration test, performance an design,” Federal Highway Administration, Report FHWA-TS-78-209 (1978).
62.Schmertmann, J. H.,“Static cone to compute static settlement over sand,”Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM3, pp.1011-1043 (1970).
63.Schnaid, F. and Houlsby, G.T., “Measurement of the properties of sand in a calibration chamber by the cone pressuremeter test,” Geotechnique, Vol.42, No.4, pp.587-601 (1992).
64.Senneset, K. and Janbu, N., “Shear Strength parameter obtained from static cone penetration tests,” ASTM STP 883, Symposium, San Diego (1984).
65.Silvestri, V., Dakroub, H, and Fahmy Y., “Analysis of cone penetration and Indentation tests in clayey soils,” Canadian Geotechnical Journal, No. 34, pp.254-263 (1997).
66.Spanner, J.C., Brown, A., Hay, D.R., Notvest, K. and Pollock, A. “Foudationals ofacoustic emission testing,”Nondestructive Testing Handbook, 2nd Ed, Vol.5, pp.11-44(1987)
67.Sweeney, B.P. and Clough G.W., “Design of a large calibration chamber,” Geotechnical Testing Journal, GTJODJ, Vol. 13, No. 1, pp.36-44 (1990).
68.Tanimoto, K. and Nakamura J., “Studies of acoustic emission in soils,” Acoustic Emissions in Geotechnical Engineering Practice, ASTM STP 750, V. P. Drnevich and R. E. Gray, Eds., American Society for Testing and Materials, pp.164-173 (1981).
69.Tringale, P.T. and J.K. Mitchell, “An acoustic cone penetrometer for site investigation,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, ESOPT-Ⅱ, pp.909-914 (1982).
70.Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer, ”Ph.D. Dissertation, University of California, Berkeley (1983).
71.Veismanis, A., “Laboratory investigation of electrical friction-cone penetrometers in sand,” Proceedings of European Symposium on Penetration Testing, ESOPT- I, Stockholm, Vol. 2.2 (1974).
72.Vesic, A.S., “Expansion of Cavity in Infinite Soil Mass,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98, No. SM3, pp.265-290 (1972).
73.Villet, W.C.B, “Acoustic emissions during the static penetration of soils,” Ph.D. Dissertation , University of California, Berkeley (1981).
74.Villet, W.C.B., Mitchell,J.K., and Tringale, P.T., “Acoustic emissions generated during the quasi-static cone penetration of soils,” Acoustic Emissions in Geotechnical Engineering Practice, ASTM STP 750, V. P. Drnevich and R. E. Gray, Eds., American Society for Testing and Materials, pp.174-193 (1981).
75.Voyiadjis, G.Z., Tumay, M.T., and Kurup, P.U., “Miniature piezocone penetration tests on soft soils in a calibration chamber system,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp.377-392 (1991).
76.Yu, H. S.,and Mitchell, J. K., “Analysis of cone resistance:review of methods,” Journal of Geotechnical and Geoenvironmental Engineering,ASCE , Vol. 124,No.2.(1998).
77.Zhang, Z. and Tumay, M.T., “Simplification of soil classification charts derived from the cone penetration test,” Geotechnical Testing Journal, GTJODJ, Vol. 19, No.2, pp.203-216 (1996).
指導教授 張惠文(Huei-wen Chang) 審核日期 2001-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明