博碩士論文 92223031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.142.252.172
姓名 吳俊達(Jyun-Da Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
(Synthesis and Characterization of Cubic Mesoporous Silicas FDU-12 and SBA-1 with Vinyl Functionality)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 醇類及矽源於中孔洞 SBA-1 之合成研究
★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究
★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究
★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用
★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用
★ 中孔洞碳材於高效能鋰離子電池之應用★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘 要
在室溫及酸性條件下,以四乙氧基矽酸鹽 (TEOS) 與三甲氧基乙烯基矽酸鹽 (TMVS) 作為共同矽源,分別使用三嵌段高分子 Pluronic F127 與溴化16基三乙氧基銨 (CTEABr) 作為主要模板試劑,以直接合成法製備結構排列整齊、具有立方、中孔洞並含有乙烯官能基的二氧化矽材料 FDU-12 (Fm3m) 與 SBA-1 (Pm3n)。
乙烯官能基的含量可藉由固態 13C 與 29Si 核磁共振光譜加以證明。而相較於直接合成乙烯官能基化的SBA-15,乙烯官能基化的 FDU-12 與 SBA-1 其乙烯官能基含量分別可達到 30 % 與 25 % 而不會對中孔洞立方結構造成損壞或無法控制的相轉變。
乙烯官能基化 FDU-12 其C=C雙鍵可輕易吸附 Methyl methacrylate (MMA) 而在孔洞中進行高分子聚合反應。
乙烯官能基化 SBA-1 的中孔洞結構在 HCl/EtOH 溶劑萃取處理下較純 SBA-1 來得規則而穩定。
摘要(英) Abstract
Direct synthesis of well-ordered cubic mesoporous silicas FDU-12 (Fm3m) and SBA-1 (Pm3n) with vinyl functionality were direct-synthesized via room temperature co-condensation of tetraethoxysilane (TEOS) and trimethoxyvinylsilane (TMVS) major templated with tri-block copolymer Pluronic F127 and cetyltriethylammonium bromide (CTEABr) under acidic conditions, respectively, has been achieved.
Qualitative evidence of the presence of chemically attached vinyl moieties was provided by solid-state 13C and 29Si NMR. In contrast to the direct synthesis of vinyl-functionalized SBA-15, the concentration of TMVS that co-condensed with TEOS could be up to 30% and 20% without observing significant loss in the long-range mesostructural ordering and uncontrollable phase transformation of the vinyl-functionalized FDU-12 and SBA-1, respectively.
The C=C double bonds of vinyl groups on v-FDU-12 are readily accessible to adsorbed methylmethacrylate (MMA) to induce polymerization within the mesopores.
Vinyl-functionalized SBA-1 materials have a better ordered and stable structure towards the treatment with the solvent extraction (HCl/EtOH) than the pure silica SBA-1 without any functionality.
關鍵字(中) ★ 乙烯
★ 官能基
★ 中孔
★ 複合
★ 材料
關鍵字(英) ★ mesoporous
★ silica
★ Fm3m
★ Ia3d
★ hybrid
★ FDU-12
★ SBA-1
★ functionalized
★ vinyl
論文目次 目 錄
中文摘要 ........................................................................................... I
英文摘要 ........................................................................................... II
致謝 ................................................................................................... III
目錄 ................................................................................................... IV
圖目錄 ............................................................................................... IX
表目錄 ............................................................................................... XII
第一章︰引言 ................................................................................... 1
1-1. 觸媒簡介 ............................................................................. 1
1-2. 界面活性劑簡介 ................................................................. 2
1-3. 微胞的形成與種類 ............................................................. 4
1-4. 中孔洞分子篩的歷史與發展 ............................................. 5
1-5. SBA-1 簡介 ......................................................................... 10
1-6. FDU-12 簡介 ....................................................................... 11
1-7. 官能基化中孔洞分子篩簡介 ............................................. 13
1-8. 研究動機與目的 ................................................................. 15
第二章︰實驗 ................................................................................... 17
2-1. 藥品 ..................................................................................... 17
2-2. 實驗步驟 ............................................................................ 18
2-2.1. 合成 v-FDU-12-X ....................................................... 18
2-2.2. 以溶劑萃取法移除 v-FDU-12-X 孔洞中的模板 .... 19
2-2.3. 以 v-FDU-12-X 與 MMA 進行高分子聚合反應 .. 20
2-2.4. 合成界面活性劑 CTEABr ......................................... 22
2-2.5. 合成 N_v-SBA-1-X .................................................... 23
2-2.6. 以溶劑萃取法移除 N_v-SBA-1-X 孔洞中的模板 24
2-3. 鑑定 ..................................................................................... 25
2-3.1. X光繞射 ...................................................................... 25
2-3.2. 氮氣吸脫附等溫曲線、表面積 與孔洞特性鑑定 ..... 25
2-3.3. 固態核磁共振 ............................................................. 27
2-3.4. 熱重分析 ..................................................................... 28
2-3.5. 穿透式電子顯微技術 ................................................. 29
2-3.6. 掃描式電子顯微技術 ................................................. 29
2-3.7. 紅外線光譜儀 …………............................................. 30
第三章︰結果與討論 ....................................................................... 31
3-1. v-FDU-12-X .......................................................................... 31
3-1.1. XRD .............................................................................. 31
3-1.2. 氮氣等溫吸脫附曲線與孔洞性質 ............................. 35
3-1.3. 13C、29Si 與 1H 固態核磁共振光譜 .......................... 37
3-1.4. 熱重分析 ................................................................... 43
3-1.5. SEM 與 TEM .............................................................. 45
3-1.6. FT-IR 紅外線光譜 ...................................................... 46
3-1.7. PMMA-FDU-12 之 XRD ............................................ 49
3-1.8. PMMA-FDU-12 之氮氣等溫吸脫附曲線
與孔洞分析 .................................................................. 50
3-1.9. PMMA-FDU-12 之核磁共振光譜 ............................. 51
3-1.10. PMMA-FDU-12 之熱重分析 ................................... 53
3-2. N_v-SBA-1-X ........................................................................ 55
3-2.1. 460_v-SBA-1-X 之 XRD ............................................ 55
3-2.2. 230_v-SBA-1-X 之 XRD ............................................ 57
3-2.3. v-SBA-1-X 的氮氣等溫吸脫附曲線圖與孔洞性質 . 60
3-2.4. 13C、29Si 與 1H 固態核磁共振光譜 ........................... 63
3-2.5. FT-IR 紅外線光譜 ...................................................... 68
3-2.6. 熱重分析 ..................................................................... 70
3-2.7. SEM ............................................................................... 72
第四章︰結論 ................................................................................... 73
參考文獻 ........................................................................................... 74
補充資料 ........................................................................................... 82
附錄 A︰SIMPSON
Simulation of Solid State NMR experiment .................. 83
A-1. SIMPSON 簡介 ............................................................. 83
A-2. 研究目的與動機 ........................................................... 83
A-3. 安裝 ............................................................................... 84
A-3.1. cygwin + SIMPSON 1.1.0 .................................... 85
A-3.2. SIMPSON 1.1.1 (Windows Installer) ...................... 91
A-4. 執行模擬與觀看結果 ................................................... 92
A-4.1. 檔案格式與資料結構 ........................................... 92
A-4.2. 模擬運算 ............................................................... 93
A-4.3. 觀看結果 ............................................................... 93
A-5. 範例 ............................................................................... 95
A-5.1. 範例檔案的取得與瀏覽 ....................................... 95
A-5.2模擬 13C-15N REDOR .............................................. 97
A-6. 參考文獻 ....................................................................... 103
附錄 B︰固態高分子電解質薄膜 ............................................. 105
B-1. 引言 ............................................................................... 105
B-2. 研究動機 ....................................................................... 108
B-3. 實驗 ............................................................................... 108
B-3.1. F127 + Brij 58 系列 .............................................. 108
B-3.2. F127 + Brij 78 系列 .............................................. 109
B-4. 結果與討論 ................................................................... 110
B-4.1. XRD ......................................................................... 110
B-4.2. 交流阻抗分析 ....................................................... 112
B-4.3. 示差掃描卡計 ....................................................... 117
B-5. 結論 ............................................................................... 119
B-6. 參考文獻 ....................................................................... 120
附錄 C︰SH官能基化 SBA-1 ................................................... 121
C-1. 實驗步驟 ....................................................................... 121
C-1.1. 合成 SH-SBA-1-X ................................................ 121
C-1.2.溶劑萃取法移除 SH-SBA-1-X 孔洞中之模板 ... 121
C-2. 實驗結果 ....................................................................... 121
C-2.1. XRD ........................................................................ 121
C-2.2. 氮氣等溫吸脫附曲線圖與孔洞性質 ................... 124
C-2.3. FT-IR ....................................................................... 125
C-2.4. NMR ........................................................................ 126
附錄 D︰SH 官能基化 SBA-1 加醣 (D-Fructose) ................. 127
D-1. 實驗步驟 ....................................................................... 127
D-1.1. 合成 SH-SBA-1-X_D-HT-Ht ................................ 127
D-1.2. 溶劑萃取法移除 SH-SBA-1-X_D-HT-Ht
孔洞中之模板 ...................................................... 127
D-2. 實驗結果 ....................................................................... 127
D-2.1. SH-SBA-1-X_1.3D-8h50-1h100 之XRD
與性質列表 .......................................................... 127
D-2.2.1. SH-SBA-1-X_1.3D-24hRT-1h100 之XRD
與性質列表 ........................................................ 130
D-2.2.2. SH-SBA-1-X_1.3D-24hRT-1h100 之
13C CP/MAS NMR .............................................. 132
D-2.2.3. SH-SBA-1-X_1.3D-24hRT-1h100 之
29Si CP/MAS NMR ............................................. 132
D-2.2.4. SH-SBA-1-X_1.3D-24hRT-1h100 之
29Si MAS NMR ................................................... 133
D-2.3. SH-SBA-1-X_1.3D-48hRT-1h100 之XRD
與性質列表 ........................................................ 134
D-2.4. SH-SBA-1-X_2.35D-8h50-1h130 之XRD
與性質列表 ........................................................ 136
附錄 E︰乙烯官能基化 SBA-1 加醣 (D-Fructose) ................ 138
E-1. 實驗步驟 ....................................................................... 138
E-1.1. 合成 v-SBA-1-X_D-HT-Ht ................................... 138
E-1.2. 溶劑萃取法移除 v-SBA-1-X_D-HT-Ht
孔洞中之模板 ...................................................... 138
E-2. 實驗結果 ....................................................................... 138
E-2.1. v-SBA-1-X_1.3D-8h50-1h100 之XRD
與性質列表 .......................................................... 138
E-2.2.1. v-SBA-1-X_1.3D-24hRT-1h100 之XRD
與性質列表 ........................................................ 141
E-2.2.2. v-SBA-1-X_1.3D-24hRT-1h100 之
13C CP/MAS NMR .............................................. 143
E-2.2.3. v-SBA-1-X_1.3D-24hRT-1h100 之
29Si CP/MAS NMR ............................................. 143
E-2.2.4. v-SBA-1-X_1.3D-24hRT-1h100 之
29Si MAS NMR ................................................... 144
E-2.3. v-SBA-1-X_2.35D-8h50-1h130 之XRD
與性質列表 ........................................................ 145
參考文獻 參 考 文 獻
[1] (a) Wang, Y. Q.; Yang, C. M.; Zibrowius, B.; Spliethoff, B.; Lindén, M.; Schüth, F. Chem. Mater. 2003, 15, 5029-5035.
(b) Wang, Y. Q.; Zibrowius, B.;Yang, C. M.; Spliethoff, B.; Schüth, F. Chem. Commun. 2004, 46-47.
[2] (a) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729-1742.
(b) Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc. 1961, 83, 4023-4027.
(c) Heck, R. F.; Adv. Organomet. Chem. 1966, 4, 243.
(d) Brown, C. K.; Wilkinson G.; J. Chem. Soc. A. 1970, 2753.
[3] Bond, G. C. “Heterogeneous Catalysis:Principles and Applications.” 2nd ed. Clarendon Press, Oxford, UK, 1987.
[4] Miessler, G. L.; Tarr, D.A. “Inorganic Chemistry”, 2nd ed, Prentice Hall, New York, 1999. pp. 498
[5] (a) Satterfield, C. N. “Heterogeneous Catalysis in Practice”, McGraw-Hill, New York, 1980.
(b) Satterfield, C. N. “Heterogeneous Catalysis in Industrial Practice”, McGraw-Hill, New York, 1991.
[6] Todros, T. F. “Surfactant”, Academic Press, London, 1984.
[7] (a) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc. Faraday Trans. 1976, 72, 1525-1568.
(b) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Biochim. Biophys. Acta 1977, 470, 185-201.
[8] Tanford, C. “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, Wiley, New York, 1973.
[9] Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New York, 1999.
[10] (a) Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996, 111, 195-202
(b). Li, Y.; Park, C.-W. Langmuir, 1999, 19, 952-956.
[11] McBain, J. N. “The Sorption of Gases and Vapors by Solids”, George Rutledge and Sons Ltd., London, 1932.
[12] Freude, D.; Hunger, M.; Pfeifer, H. Z. Phys. Chem. 1987, 152, 171.
[13] (a) Yang, S. M.; Wu, S. T.; Chin, J. Chem. Soc., 1988, 35, 141.
(b) Hedge, S.G.; Ratnasamy, P.; Kustov, L. M.; Kazansky, V. B. Zeolites, 1988, 8, 137.
(c) Davis, M. E.; Montes, C.; Garces, J. M. ACS symposium series, 1989, 399, 291.
[14] (a) Kresge, C. T.; Leonowicz, M. E.; Roth, E. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710-712.
(b) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.;Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. J. Am. Chem. Soc. 1992, 114, 10834-10843.
[15] (a) Busio, K.; Jänchen, J.; van Hooff, J. H. C. Microporous Mater. 1995, 5, 211-218.
(b) Weglarski, J.; Datka, J.; He, H.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1996, 92, 5161-5164.
(c) Kosslick, H.; Lischke, G.; Walther, G.; Storek, W.; Martin, A.; Fricke, R. Microporous Mater. 1997, 9, 13-33.
(d) Cheng, C.-F.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1996, 92, 289-292.
(e) Luan, Z.; He, H.; Zhou, W; Cheng, C.-F.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1995, 91, 2955-2959.
(f) Mokaya, R.; Jones, W. Chem. Commun., 1996, 983-984.
[16] Firouzi, A.; Kumar, D.; Bull, L. M.; Besier,T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, G. F. Science. 1995, 267, 1138-1143.
[17] (a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G.D. Science. 1998, 279, 548-552.
(b) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024-6036.
[18] Pluronic poly(alkene oxide) triblock copolymers are trademarked products of BASF, Mt. Olive, NJ.
[19] (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994, 368, 317-321.
(b) Chen, C.; Li, H.; Davis, M. E. Microporous Mater. 1993, 2, 17.
(c) Attard, G. S.; Glyde, J. C. Nature. 1995, 378, 366-368.
(d) Göltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431-436.
[20] (a) Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925-11933.
(b) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater.; 2000, 12, 1961-1968.
(c) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B. 2000, 104, 11465-11471.
(d) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B. 2001, 105, 6817-6823.
[21] Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D. J. Phys. Chem. B. 2002, 106, 2552-2558.
[22] IUPAC. “Manual of Symbols and Serminology for Physicochemical Quantities and Units. Appendix II : Denitions, Terminology and Symbols in Colloid and Surface Chemistry part I”, Pure Appl. Chem., 1972, 31, 579
[23] (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuüth, F.; Stucky, G. D. Chem. Mater. 1994, 6, 1176-1191.
(b) Huo, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D. Science 1995, 268, 1324-1327.
(c) Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147-1160.
[24] Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491.
[25] Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D. Angew.Chem.Int.Ed. 2003, 42, 3146 -3150.
[26] (a) Yu, C.; Tian, B,; Fan, J.; Stucky, G. D.; Zhao, D. Chem. Commum. 2001, 2726-2727
(b) Yu, C.; Tian, B.; Fan, J.; Stucky, G. D.; Zhao, D. J. Am. Chem. Soc. 2002, 124, 4556-4557.
[27] (a) Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science. 1994, 265, 1413-1415.
(b) Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
(c) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Liu, J.; Kemner, K. M. Science. 1997, 276, 923-926.
[28] (a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L. Adv. Meter. 1998, 10, 161-165.
(b) Moller, K.; Bein, T. Stud. Surf. Sci. Catal. 1998, 117, 53-.
(c) Brunel, D. Microporous Mesoporous Mater. 1999, 27, 329-344.
(d) Impens, N. R. E. N.; Van der Voort, P.; Vansant, E. F. Microporous Mesoporous Mater. 1999, 28, 217-232.
(e) Clark, J. H.; Macquarrie, D. J.; Wilson, K. Stud. Surf. Sci. Catal. 2000, 129, 251-.
(f) Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2003, 15, 2161-2173
[29] Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
[30] Yamada, T.; Zhou, H.-S.; Uchida, U.; Tomita, M.; Ueno, Y.; Ichino, T.; Honma, I.; Asai, K.; Katsube, T. Adv. Mater. 2002, 14, 812-815.
[31] Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456.
[32] (a) Lim, M. H.; Blanford, C. F.; Stein, A. J. Am. Chem. Soc. 1997, 119, 4090-4091.
(b) Engelhardt, G.; Groeger, O.; Palm, C.; Röser, T. J. Phys. Chem. B 2000, 104, 3532-3544.
[33] (a) Ji, X.; Hampsey, J. E.; Hu, Q.; He, J.; Yang, Z.; Lu, Y. Chem. Mater. 2003, 15, 3656-3662
(b) Ueda, J.; Sato, S.; Tsunokawa, A.; Yamauchi, T.; Tsubokawa, N. Eur. Polym. J. 2005, 41, 193-200.
[34] Moller, K.; Bein, T.; Fischer, R. X. Chem. Mater. 1999, 11, 665-673.
[35] Gibbons, G. J.; Holland, D.; Howes, A. P. J. Sol-Gel. Sci. Tech. 1998, 13, 379-383.
[36] Engelhardt, G.; Michel, D. “High-Resolution Solid-State NMR of Silicates and Zeolites”, John Wiley & Sons Inc, New York. 1988.
[37] (a) Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7, 1829-1832.
(b) Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285-3295.
[38] Blin, J. L.; Gerardin, C.; Rodehuser, L.; Selve, C.; Stebe, M. J. Chem. Mater. 2004, 16, 5071-5080.
[39] (a) Zhan, B.-Z.; White, M. A.; Lumsden, M. Langmuir, 2003, 19, 4205-4210
(b) He, J.; Shen, Y.; Yang, J.; Evans, D. G.; Duan, X. Chem. Mater. 2003, 15, 3894-3902.
[40] Cazacu, M.; Dragan, S.; Vlad, A. J. Appl. Polym. Sci. 2003, 88, 2060-2067.
[41] (a) Percy, M. J.; Michailidou, V.; Armes, S. P.; Perruchot, C.; Watts, J. F.; Greaves, S. J. Langmuir, 2003, 19, 2072-2079.
(b) Percy, M. J.; Amalvy, J. I.; Randall, D. P.; Armes, S. P.; Greaves, S. J.; Watts, J. F. Langmuir, 2004, 20, 2184-2190.
[42] (a) Gregg, S.J.; Sing, K. S. W. “Adsorption, surface area and porosity”, 2nd ed. Academic Press, London. 1982, pp. 262
(b) Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603-619.
[43] Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature, 2000, 408, 449-453.
[44] Che, S.; Kamiya, S.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2001, 123, 12089-12090.
[45] Che, S.; Sakamoto, Y.; Terasaki, O.; Tatsumi, T. Chem. Lett. 2002, 31, 214-215.
[46] Koyano, K. A.; Tatsumi, T.; Tanaka, Y.; Nakata, S. J. Phys. Chem. B, 1997, 101, 9436-9440.
[47] Kim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467-470.
[48] Hiemenz, P. C.; Rajagopalan, R. “Principles of Colloid and Surface Chemistry”, 3rd ed. Marcel Dekker, New York, 1997.
[49] Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373-380.
[50] Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723-1732.
[51] (a) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature 1958, 182, 1659.
(b) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature 1959, 183, 1802.
[52] (a) Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1971, 56, 1776.
(b). Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1971, 59, 596.
[53] (a) Schaefer, J.; Stejskal, E. O.; Buchdahl, R. Macromolecule 1975, 8, 291.
(b) Schaefer, J.; Stejskal, E. O. J. Am. Chem. Soc. 1976, 98, 1031.
(c) Schaefer, J.; Stejskal, E. O.; Buchdahl, R. Macromolecule 1977, 10, 385.
(d) Stejskal, E. O.; Schaefer, J.; Waugh, J. S. J. Magn. Reson. 1977, 28, 105.
[54] (a) Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865-867.
(b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia. T. J. Science. 1995, 269, 1242-1244.
[55] (a) Prouzet, E.; Pinnavaia. T. J. Angew. Chem. Int. Ed.; 1997, 36, 516-518.
(b) Antonietti, M.; Göltner, C. G. Angew. Chem. Int. Ed.; 1997, 36, 910-928.
(c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. J. Am. Chem. Soc. 1997, 119, 3596-3610.
[56] Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151-3168.
[57] (a) Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Comm. 1996, 1367-1368
(b) Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000, 12, 188-196.
(c) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.; Qzin, G. A. J. Mater. Chem. 2002, 12, 3452-3457.
[58] Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1999, 201-202.
[59] (a) Mori, Y.; Pinnavaia, T. J. Chem. Mater. 2001, 13, 2173-2178.
(b) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P. J. Phys. Chem. B 2001, 105, 9935-9942.
[60] Macquarrie, D. J.; Jackson, D. B.; Mdoe, J. E.; Clark, J. H. New J. Chem. 1999, 23, 539-544.
[61] Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 124, 6383-6392.
[62] (a) Kruk, M.; Asefa, T.; Whitnal, W.; Kruk, M.; Yoshina-Ishii, C.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 46, 13886-13895.
(b) Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski, I. L.; Ripmeester, J. R. Chem. Mater.; 2000, 12, 3857-3863.
(c) Yang, Q.; Li, Y.; Zhang, L.; Yang, J.; Liu, J.; Li, C. J. Phys. Chem. B. 2004, 108, 7934-7937.
(d) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 5660-5661.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2005-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明