博碩士論文 93223004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.144.30.70
姓名 張鈞崴(Chun-Wei Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 烷烴氧化菌及氧化酵素之純化與功能性探討
(Functional Studies of the Alkane Utilizing Bacteria Pseudomonas oleovorans and its ω- Hydroxylase)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力
★ 葛蘭氏陰性菌脂質A之結構研究★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究
★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應
★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為
★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為★ 網頁圖形界面在分子模擬上的應用
★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制
★ 染料敏化太陽能電池吸光性質的計算研究★ Free Energy Landscape of Ca2+ Induced Lipid Micelle Fusion : Observation of a Dewetting Transition
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 細胞膜非血基質二鐵烷類羥化酶 (alkane hydroxylase, alkB)來自Pseudomonas oleovorans可羥基化中等直鏈烷類,蛋白質序列比對和定點突變均顯示alkB和許多真核或原核的膜蛋白desaturase具有多個組胺酸可與活化中心的鐵離子配位。此外,還有兩個酵素rubredoxin-2 和 rubredoxin reductase在細胞質中,負責將電子從NADH傳遞至膜上的烷類羥化酶。
我們成功的從大腸桿菌中表現並且藉由金屬離子親和層析法(metal-affinity chromatography)純化具有His-tag的重組alkane hydroxylase和rubredoxin-2。經由光譜分析得知,所純化的His-tagged rubredoxin-2僅有一個三價鐵離子在C端,可被spinach ferredoxin reductase還原成二價鐵,而此還原過程還造成蛋白質二級結構的改變。在純化具有His-tag的重組alkane hydroxylase時,發現需要比一般His-tag的重組蛋白還要更高濃度的咪唑(imidazole)才可將其從Ni2+ column沖提出來。藉由Ni2+ column純化野生型alkane hydroxylase,我們得知在蛋白質表面與鐵催化中心配位的多個組胺酸是造成His-tag的重組alkB與Ni2+ column會有較高親和力的原因。加入FeSO4之後,野生型與His-tag重組的alkane hydroxylase均可將1,7-octadiene環氧化成1,2-epoxy-7-octene,當spinach ferredoxin reductase、NADPH和自行純化僅有一個鐵離子的His-tag重組rubredoxin-2均存在的活性測試中。這顯示了alkB中與鐵離子配位的多個組胺酸活化中心暴露在蛋白質表面,而藉由金屬離子親和層析法可以簡易的純化野生型膜蛋白alkane hydroxylase。
摘要(英) The integral membrane non-heme diiron alkane hydroxylase (alkB) from Pseudomonas oleovorans is able to hydroxylate medium-chain-length alkane. Primary protein sequence alignment and site-directed mutagenesis demonstrated that alkB and numbers of eukaryotic or prokaryotic integral-membrane desaturase comprise evolutionarily histidine-rich motifs probably coordinating the active site iron center. The other two components in the cytoplasm of the alkane hydroxylase complex, rubredoxin-2 and rubredoxin reductase, are responsible for reducing equivalent electron transfer from NADH to ω-hydroxylase.
We successfully expressed and purified the recombinant His-tagged integral-membrane alkane hydroxylase and cytosolic rubredoxin-2 from E. coli lysates by a simple metal-affinity chromatography. On the basis of spectroscopic data, the isolated His-tagged rubredoxin-2 containing only one iron atom located at the C-terminal domain can be reduced by NADPH-dependent spinach ferredoxin reductase and subsequently results in conformational change of secondary structure. During purification, the recombinant His6-tagged ω-hydroxylase required more competing imidazole to elute out from Ni2+ column than the usual His6-tagged protein. After wild type alkane hydroxylase purification by Ni2+ column, we revealed that additional Ni2+ affinity for the recombinant His-tagged alkB come form surface poly-histidine residue motifs of ω-hydroxylase for catalytic iron coordination. In activity assay, both recombinant His-tagged and wild type alkane hydroxylase, after addition of FeSO4, are able to convert 1,7-octadiene to 1,2-epoxy-7-octene in the present of recombinant His-tagged 1Fe-rubredoxin-2, NADPH and spinach ferredoxin reductase. It supports the active site iron coordinating His-rich motifs of alkB are exposed to the protein surface, and simple purification of alkane hydroxylase was achieved by metal-affinity chromatography.
關鍵字(中) ★ 烷烴氧化酵素 關鍵字(英) ★ alkane hydroxylase system
論文目次 Abstract.......................................................................................................................III
中文摘要.....................................................................................................................IV
Chapter 1: Introduction ..............................................................................................1
1.0 Preface.............................................................................................................1
1.1 Alkane Oxygenase and its Related Enzymes ...............................................3
1.1.1 Rubredoxin and rubredoxin reductase ..................................................3
1.1.2 ω-hydroxylase and related integral-membrane proteins .......................7
1.1.3 Other non-heme soluble diiron metalloproteins .................................12
1.1.3.1 Hemerythrin .............................................................................12
1.1.3.2 Soluble methane monooxygenase............................................13
1.1.3.3 Ribonucleotide reductase .........................................................13
1.1.3.4 Stearoyl-ACPΔ9-desaturase .....................................................14
1.1.4 Models of the non-heme diiron alkane monooxygenase ....................15
1.2 The Reaction Mechanism of Cytochrome P-450.......................................16
1.3 Implication of the Hydroxylation Mechanism for the Particulate
Methane Monooxygenases from Methylococcus capsulatus (Bath) .........18
1.4 Design of the Carbon-Position-Specific Fluorine Enriched Hydrocarbons
as Substrates of the ω-Hydroxylase............................................................19
Chapter 2: Experimental Methods...........................................................................21
2.1 Materials and Instrumentation...................................................................21
2.1.1 Materials .............................................................................................21
2.1.2 Instrumentation ...................................................................................22
2.2 Culturing and Growth of P. oleovorans......................................................23
2.3 Construction of Expression Vectors ...........................................................26
2.3.1 Chromosomal DNA extraction ...........................................................26
2.3.2 Polymerase chain reaction (PCR) .......................................................26
2.3.3 Purification of PCR product................................................................27
2.3.4 Phosphorylation ..................................................................................28
2.3.5 Plasmid extraction...............................................................................28
2.3.6 Vector preparation...............................................................................28
2.3.7 Ligation ...............................................................................................29
2.3.8 Transformation....................................................................................29
2.3.9 Screening of recombinants..................................................................29
2.3.10 Small–scale protein induction...........................................................30
2.4 Overexpression and Purification of Recombinant Rubredoxin-2 ...........30
2.5 Expression and Purification of Recombinant ω-Hydroxylase.................31
2.6 Membrane Preparations from P. oleovorans .............................................32
2.7 Purification of Wild type ω-Hydroxylase ..................................................33
2.7.1 Method 1 .............................................................................................33
2.7.2 Method 2 .............................................................................................33
2.8 In-gel Digestion and Peptide Mass Fingerprinting (PMF).......................33
2.9 Assay of Alkane Hydroxylase Activity........................................................34
2.10 The Synthesis of 2,2-Difluorooctane and 3,3-Difluorooctane ................34
Chatpter 3: Results and Discussion..........................................................................36
3.1 Construction of Expression Vectors ...........................................................36
3.1.1 Chromosomal DNA extraction ...........................................................36
3.1.2 Polymerase chain reaction ..................................................................36
3.1.3 Cloning and protein induction ............................................................38
3.2 Expression of Recombinant Rubredoxin Reductase.................................38
3.3 Expression and Purification of Recombinant Rubredoxin-2...................40
3.4 Spectral Properties of Recombinant His-tagged Rubredoxin-2 ..............44
3.4.1 UV/visible Spectra ..............................................................................44
3.4.2 CD Spectra ..........................................................................................45
3.4.3 EPR spectra.........................................................................................47
3.5 Expression and Purification of Recombinant ω-Hydroxylase.................48
3.6 Purification of Wild Type ω-Hydroxylase from P. oleovorans ................51
3.7 Assay of Alkane Hydroxylase Activity........................................................55
3.8 The Preparation of 2,2-Difluorooctane and 3,3-Difluorooctane as
Substrates of ω-Hydroxylase. ....................................................................57
Chapter 4: Conclusions .............................................................................................60
References:..................................................................................................................62
Appendix.....................................................................................................................66
參考文獻 (1) Lipscomb, J. D. (1994) Biochemistry of the Soluble Methane Monooxygenase. Annual Review of Microbiology 48, 371-399.
(2) Wallar, B. J., and Lipscomb, J. D. (1996) Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. Chem. Rev. 96, 2625-2658.
(3) Kao, W. C., Chen, Y. R., Yi, E. C., Lee, H., Tian, Q., Wu, K. M., Tsai, S. F., Yu, S. S., Chen, Y. J., Aebersold, R., and Chan, S. I. (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279, 51554-60.
(4) Elliott, S. J., Zhu, M., Tso, L., Nguyen, H. H. T., Yip, J. H. K., and Chan, S. I. (1997) Regio- and Stereoselectivity of Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 119, 9949-9955.
(5) Yu, S. S., Wu, L. Y., Chen, K. H., Luo, W. I., Huang, D. S., and Chan, S. I. (2003) The stereospecific hydroxylation of [2,2-2H2]butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 278, 40658-69.
(6) Baptist, J. N., Gholson, R. K., and Coon, M. J. (1963) Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta 69, 40-7.
(7) Peterson, J. A., Kusunose, M., Kusunose, E., and Coon, M. J. (1967) Enzymatic omega-oxidation. II. Function of rubredoxin as the electron carrier in omega-hydroxylation. J Biol Chem 242, 4334-40.
(8) Austin, R. N., Chang, H. K., Zylstra, G. J., and Groves, J. T. (2000) The Non-Heme Diiron Alkane Monooxygenase of Pseudomonas oleovorans (AlkB) Hydroxylates via a Substrate Radical Intermediate. J. Am. Chem. Soc. 122, 11747-11748.
(9) Fu, H., Newcomb, M., and Wong, C.-H. (1991) Pseudomonas oleovorans Monooxygenase Catalyzed Asymmetric Epoxidation of Allyl Alcohol Derivatives and hydroxylation of a hypersensitive radical probes with the radical ring opening rate exceeding the oxygen rebound rate. J. Am. Chem. Soc. 113, 5878-5880.
(10) Andreas G. Katopodis, H. A. S., Jr., and Sheldon W. May. (1988) New Oxyfunctionalization Capabilities for w-Hydroxylases:
Asymmetric Aliphatic Sulfoxidation and Branched Ether
Demethylation. J. Am. Chem. SOC., 897-899.
(11) Andreas G. Katopodis, K. W., Joseph Lee, and Sheldon W. May. (1984) Mechanistic Studies on Non-Heme Iron Monooxygenase Catalysis Epoxidation, Aldehyde Formation, and Demethylation by the w-Hydroxylation System of Pseudomonas oleovorans. J. Am. Chem. Soc. 106, 7928-7935.
(12) McKenna, E. J., and Coon, M. J. (1970) Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans. J Biol Chem 245, 3882-9.
(13) Renata G. Mathys, A. S. B. W. (1999) Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: Process design and economic evaluation. Biotechnology and Bioengineering 64, 459-477.
(14) van Beilen, J. B., Smits, T. H., Roos, F. F., Brunner, T., Balada, S. B., Rothlisberger, M., and Witholt, B. (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol 187, 85-91.
(15) Shanklin, J., Achim, C., Schmidt, H., Fox, B. G., and Munck, E. (1997) Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A 94, 2981-6.
(16) Ueda, T., Lode, E. T., and Coon, M. J. (1972) Enzymatic omega-oxidation.VI. Isolation of homogeneous reduced diphosphopyridine nucleotide-rubredoxin reductase. J Biol Chem 247, 2100-2116.
(17) Peterson, J. A., and Coon, M. J. (1968) Enzymatic omega-oxidation. III. Purification and properties of rubredoxin, a component of the omega-hydroxylation system of Pseudomonas oleovorans. J Biol Chem 243, 329-34.
(18) Peterson, J. A., Basu, D., and Coon, M. J. (1966) Enzymatic omega-oxidation. I. Electon carriers in fatty acid and hydrocarbon hydroxylation. J Biol Chem 241, 5162-4.
(19) Chakrabarty, A. M., Chou, G., and Gunsalus, I. C. (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci U S A 70, 1137-40.
(20) Kok, M., Oldenhuis, R., van der Linden, M. P., Raatjes, P., Kingma, J., van Lelyveld, P. H., and Witholt, B. (1989) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem 264, 5435-41.
(21) Kok, M., Oldenhuis, R., van der Linden, M. P., Meulenberg, C. H., Kingma, J., and Witholt, B. (1989) The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J Biol Chem 264, 5442-51.
(22) Eggink, G., Engel, H., Vriend, G., Terpstra, P., and Witholt, B. (1990) Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol 212, 135-42.
(23) Eggink, G., Engel, H., Meijer, W. G., Otten, J., Kingma, J., and Witholt, B. (1988) Alkane utilization in Pseudomonas oleovorans. Structure and function of the regulatory locus alkR. J Biol Chem 263, 13400-5.
(24) Eggink, G., Lageveen, R. G., Altenburg, B., and Witholt, B. (1987) Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J Biol Chem 262, 17712-8.
(25) van Beilen, J. B., Panke, S., Lucchini, S., Franchini, A. G., Rothlisberger, M., and Witholt, B. (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147, 1621-30.
(26) Lode, E. T., and Coon, M. J. (1971) Enzymatic omega-oxidation. V. Forms of Pseudomonas oleovorans rubredoxin containing one or two iron atoms: structure and function in omega-hydroxylation. J Biol Chem 246, 791-802.
(27) Lee, H. J., Lian, L. Y., and Scrutton, N. S. (1997) Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies. Biochem J 328 ( Pt 1), 131-6.
(28) Perry, A., Lian, L. Y., and Scrutton, N. S. (2001) Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies. Biochem J 354, 89-98.
(29) Perry, A., Tambyrajah, W., Grossmann, J. G., Lian, L. Y., and Scrutton, N. S. (2004) Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase. Biochemistry 43, 3167-82.
(30) Coon, M. J. (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338, 378-85.
(31) van Beilen, J. B., Neuenschwander, M., Smits, T. H., Roth, C., Balada, S. B., and Witholt, B. (2002) Rubredoxins involved in alkane oxidation. J Bacteriol 184, 1722-32.
(32) van Beilen, J. B., Penninga, D., and Witholt, B. (1992) Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem 267, 9194-201.
(33) Shanklin, J., and Cahoon, E. B. (1998) Desaturation and Related Modifications of Fatty Acids. Annu Rev Plant Physiol Plant Mol Biol 49, 611-641.
(34) Shanklin, J., Whittle, E., and Fox, B. G. (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 12787-94.
(35) Avelange-Macherel, M. H., Macherel, D., Wada, H., and Murata, N. (1995) Site-directed mutagenesis of histidine residues in the delta 12 acyl-lipid desaturase of Synechocystis. FEBS Lett 361, 111-4.
(36) Taton, M., Husselstein, T., Benveniste, P., and Rahier, A. (2000) Role of highly conserved residues in the reaction catalyzed by recombinant Delta7-sterol-C5(6)-desaturase studied by site-directed mutagenesis. Biochemistry 39, 701-11.
(37) Solomon, E. I., Brunold, T. C., Davis, M. I., Kemsley, J. N., Lee, S. K., Lehnert, N., Neese, F., Skulan, A. J., Yang, Y. S., and Zhou, J. (2000) Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes. Chem. Rev. 100, 235-350.
(38) Que, L., and Dong, Y. (1996) Modeling the Oxygen Activation Chemistry of Methane Monooxygenase and Ribonucleotide Reductase. Acc. Chem. Res. 29, 190-196.
(39) Holm, R. H., Kennepohl, P., and Solomon, E. I. (1996) Structural and Functional Aspects of Metal Sites in Biology. Chem. Rev. 96, 2239-2314.
(40) Merkx, M., Kopp, D. A., Sazinsky, M. H., Blazyk, J. L., Muller, J., and Lippard, S. J. (2001) Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins. Angew Chem Int Ed Engl 40, 2782-2807.
(41) Kim, C., Dong, Y., and Que, L. (1997) Modeling Nonheme Diiron Enzymes: Hydrocarbon Hydroxylation and Desaturation by a High-Valent Fe2O2 Diamond Core. J. Am. Chem. Soc. 119, 3635-3636.
(42) Kim, C., Chen, K., Kim, J., and Que, L. (1997) Stereospecific Alkane Hydroxylation with H2O2 Catalyzed by an Iron(II)-Tris(2-pyridylmethyl)amine Complex. J. Am. Chem. Soc. 119, 5964-5965.
(43) Costas, M., Rohde, J. U., Stubna, A., Ho, R. Y. N., Quaroni, L., Munck, E., and Que, L. (2001) A Synthetic Model for the Putative FeIV2O2 Diamond Core of Methane Monooxygenase Intermediate Q. J. Am. Chem. Soc. 123, 12931-12932.
(44) Abhik Ghosh, E. T. E. G. L. Q., Jr. (2004) Models of High-Valent Intermediates of Non-Heme Diiron Alkane Monooxygenases: Electronic Structure of a Bis(μ-oxo)diron(IV) Complex with Locally Low-Spin Metal Centers. Angewandte Chemie International Edition 43, 834-838.
(45) Meunier, B., deVisser, S. P., and Shaik, S. (2004) Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev. 104, 3947-3980.
(46) 塗立群. (2004) Enzymatic Kinetics: The hydroxylation and epoxidation reaction of small alkanes and alkenes as mediated by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). 國立清華大學化學系碩士論文.
(47) 黃哥弋耀. (2005) The studies of substrate reaction mechanism mediated by Particulate Methane Monooxygenase (pMMO) from M. capsulatus(Bath). 國立成功大學化學研究所碩士論文.
(48) Shih, Y. P., Kung, W. M., Chen, J. C., Yeh, C. H., Wang, A. H., and Wang, T. F. (2002) High-throughput screening of soluble recombinant proteins. Protein Sci 11, 1714-9.
(49) Havlis, J., Thomas, H., Sebela, M., and Shevchenko, A. (2003) Fast-Response Proteomics by Accelerated In-Gel Digestion of Proteins. Anal. Chem. 75, 1300-1306.
(50) Rajendra, P. S., Jean’ne M. Shreeve. (2002) Recent advances in nucleophilic fluorination reaction of organic compounds using deoxofluor and dast. Synthesis 17, 2561-2583.
(51) Lee, H. J., Basran, J., and Scrutton, N. S. (1998) Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. Biochemistry 37, 15513-22.
(52) Page, C. C., Moser, C. C., Chen, X., and Dutton, P. L. (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47-52.
(53) Nieboer, M., Kingma, J., and Witholt, B. (1993) The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Mol Microbiol 8, 1039-51.
(54) Peters, J., and Witholt, B. (1994) Solubilization of the overexpressed integral membrane protein alkane monooxygenase of the recombinant Escherichia coli W3110 (pGEc47). Biochim. Biophys. Acta 1196, 145–153.
(55) Shanklin, J., and Whittle, E. (2003) Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett 545, 188-92.
(56) May, S. W., and Abbott, B. J. (1973) Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans. J Biol Chem 248, 1725-30.
(57) Bertrand, E., Sakai, R., Rozhkova-Novosad, E., Moe, L., Fox, B. G., Groves, J. T., and Austin, R. N. (2005) Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. J Inorg Biochem 99, 1998-2006.
(58) Tshuva, E. Y., and Lippard, S. J. (2004) Synthetic Models for Non-Heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics. Chem. Rev. 104, 987-1012.
指導教授 俞聖法、蔡惠旭
(Steve Sheng-Fa Ya、Hui-Hsu Gavin Tsai)
審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明