博碩士論文 89224009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.145.154.219
姓名 鄭振利(chen-li cheng)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 以16S rDNA指紋研究Triton X-100生物復育系統之菌相
(Study of the bacterial community in a Triton X-100 bioredmediation system by 16S rDNA fingerprinting)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Triton X-100為非離子界面活性劑,一般使用於工業、農業和家庭,約有5-85 % 界面活性劑混合在農藥與除草劑上,當大量使用農藥時,就會直接經由農藥的噴灑而導入環境中。界面活性劑含有親水和親油基的結構,本身具有毒性外,它的化學性質會改變有機污染物在土壤中傳輸行為,有些代謝中間体甚至具環境荷爾蒙效應甚而危害到人体的健康。本實驗重點是採用16S rDNA指紋並搭配變性梯度膠体電泳 ( Denaturing gradient gel electrophoresis ) 分析界面活性劑污染土壤的菌群,並監視土壤菌相的變化與Triton X-100分解之關連,和外加Triton X-100分解菌 ( Pseudomonas sp. SH4 ) 對Triton X-100分解的影響;本研究乃以長期施用含相似界面活性劑污染土壤製作之縮模,進行界面活性劑之生物復育研究。添加Pseudomonas sp.SH4的實驗組,並連續通氣處理一個月後可分解4.35g 的Triton X-100 (占原本之72.5%),所以選取此土壤做16S rDNA基因轉殖,共鑑定11株菌,除Flavobacterium sp. wuba 46其他皆屬於α、β、γ-Proteobacteria,在這一組土壤縮模Pseudomonas sp. SH4、Stenotrophomonas maltophilia和Agrobacterium tumefaciens Zutra F/1為優勢菌。含有SH4、Triton X-100、控溫並持續通氣的實驗組中,其Stenotrophomonas maltophilia、Stenotrophomonas sp.為優勢菌。另外添加Pseudomonas sp. SH4與Triton X-100但不通氣的實驗組除了Stenotrophomonas maltophilia、Stenotrophomonas sp.外還發現Agrobacterium tumefaciens Zutra F/1與clone 4-70 ( uncultured β-proteobacterium ) 亦為優勢菌。本研究證實有二組土壤縮模添加Pseudomonas sp. SH4與持續通氣(其中一組為並控制溫度在30℃),加入6 g 的Triton X-100在土壤裡經過二個月後,兩組皆能完全分解掉Triton X-100,反之未添加Pseudomonas sp. SH4分解菌,經過二個月,還殘留2.67g 的Triton X-100,三個月後仍然會分析到1.45g的Triton X-100。因此可得以下結論,Pseudomonas sp. SH4 對於生物復育的進行是不可缺少的。
摘要(英) Triton X-100 is a non-ionic detergent and it often used in industrial, agricultural and household area. There are 5~85% surfactants mixing in the pesticides and herbicides. It can be directly introduced into the environment by spraying the pesticides as well as the herbicides through agricultural activities. The structure of the surfactant includes both hydrophilic and hydrophobic group. In addition to the toxicity, its chemical property also has great influence on the organic contaminants fates in the soil and even impacts public health. The focal point in this study is to use 16S ribosomal DNA fingerprinting method and denaturing gradient gel electrophoresis (DGGE) to analyze the community in the surfactant-polluted soil. Besides monitoring the relationship of community and Triton X-100, we added Pseudomonas sp. SH4 to see what changed in the community and Triton X-100 biodegradation. In this study, we used the microcosm which contained surfactant-like polluted soil over a long period of time to proceed with the research of surfactant bioremediation. There were 4.35 g Triton X–100 degrading in the SH4-added groups (72.5% of the original Triton X-100 weight). We chose the sample to proceed with 16S rDNA cloning library. Then we identified 11 strains by DGGE screening. From the phylogenetic analysis we knew that they were belong to the α, β, γ-proteobacteria. (except of the Flavobacterium sp. wuba 46) In the DGGE fingerprinting we found that Pseudomonas sp. SH4, Stenotrophomonas maltophilis, and Agrobacterium tumefaciens Zutra F/1 were dominant strains in the third group. Also, Pseudomonas sp. SH4, Stenotrophomonas maltophilia, Stenotrophomonas sp., and Stenotrophomonas maltophilia were dominant in the fourth, fifth, and sixth groups. In the group with SH4 and Triton X-100 but without air, we found that Agrobacterium tumefaciens Zutra F/1 and clone 4-70 (uncultured beta proteobacterium) are also dominant strains. Two microcosms contained Pseudomonas sp. SH4 and kept pumping air, but one of them was 30℃ fixed controlled. Two months later, 6 g Triton-100 were degraded completely. Whereas, the groups without SH4 degrader still contained about 2.67 g Trioton-100. Even three months later, 1.45 g Triton-100 would still be detected. As a result, Pseudomonas sp. SH4 plays an important role in the bioremediation.
關鍵字(中) ★ 16S rDNA
★ 指紋
★ Triton X-100
★ 生物復育
★ 菌相
關鍵字(英) ★ Triton X-100
★ community
★ fingerprint
★ DGGE
★ 16S rDNA
論文目次 目錄…………………………………………………………………..Ⅰ
表目錄……………………………………………………………….Ⅳ
圖目錄……………………………………………………………….Ⅴ
縮寫與全名對照表………………………………………………….Ⅵ
壹、文獻回顧 I
一、界面活性劑的運用與種類 1
二、環境微生物與應用在環境污染物之去除 2
三、Pseudomonas sp. SH4 4
四、生物復育系統 5
五、分析環境微生物的方法 6
六、核醣體核醣核酸的介紹 7
七、以聚合酵素放大16S rDNA 8
八、以變性梯度膠体電泳法分析菌相 9
九、研究背景與目的 10
本研究之實驗大綱與流程: 11
貳、材料與方法 12
一、細菌與材料的製備 12
二、土壤縮模系統的建立 14
三、萃取土壤菌群總DNA 15
四、聚合酵素實驗 17
五、16S rDNA菌種基因庫 18
六、變性梯度膠体電泳法 21
七、菌種鑑定 21
八、建立親緣樹 22
九、高效能液相層析儀分析Triton X-100分解 22
十、儀器設備 24
十一、化學藥品 25
參、結果 26
一、以16s rDNA clone library鑑定菌種 26
二、不同條件對Triton X-100分解菌群之影響 26
三、 Triton X-100分解菌群親緣分析 28
四、Triton X-100分解情形 28
五、中間代謝產物之分析 29
肆、討論 33
一、分生實驗注意事項 33
二、分解菌群利用(雙)加氧酵素分解Triton X-100的可能路徑 34
三、16S rDNA序列未檢測到Pseudomonas sp. SH4 34
四、Pseudomonas sp. SH4在生物復育系統中所扮演的角色 35
五、各菌種含有加氧酵素的種類 36
伍、結論與建議 37
陸、參考文獻 39
附錄A、細菌系統分類學之種類與特性…………………………..66
附錄B、抽取土壤菌群總DNA之配方……………………………..67
附錄C、變性梯度凝膠電泳配方…………………………………..68
附錄D、PCR 引子( primer )序列………………………………….70
表目錄
表1. 以Triton X-100為唯一碳源篩選得到菌種……..…………..48
表2. 五菌株水相動力分析結果..………………………………….49
表3. 16S rDNA clone library 鑑定得到菌種…..………………….50
圖目錄
圖1. Triton X-100與研究之代謝產物之化學結構圖…..…………51
圖2. Pseudomonas sp. SH4之生長曲線……………………………52
圖3. 土壤縮模的設計圖…………………………………………...53
圖4. 各組土壤縮模控制條件……………………………………..54
圖5. 16S rDNA基因選殖圖…..……………………………………55
圖6. 利用變性梯度凝膠電泳分析土壤縮模第1-6組菌群……….56
圖7. 16S rDNA多序列與Pseudomonas sp. SH4之親緣樹狀圖…57
圖8-1. 第2組與3組分解Triton X-100之比較圖………………...58
圖8-2. 第3組與4組分解Triton X-100之比較圖…………………58
圖8-3. 第3組與5組分解Triton X-100之比較圖…………………58
圖8-4. 第3組與6組分解Triton X-100之比較圖…………………58
圖9-1. 土壤縮模控制條件不同生成octylphenol之情形…...……59
圖9-2. 土壤縮模控制條件不同生成octylphenol之情形…………59
圖9-3. 土壤縮模控制條件不同生成octylphenol之情形….……..60
圖9-4. 土壤縮模控制條件不同生成octylphenol之情形….……..60
圖9-5. 土壤縮模控制條件不同生成octylphenol之情形……..…..61
圖10. 分析各組土壤縮模產生Phenol…………………………….62
圖11. 預測Triton X-100好氧性分解之第一途徑………………..63
圖12. 預測Triton X-100好氧性分解之第二途徑………………..64
圖13. 16S rDNA序列與Pseudomonas sp. SH4之多序列比較..….65
參考文獻 陸、參考文獻
刈米孝夫 原著 王鳳英 編譯。1996年。界面活性劑的原理與應用。高立圖書。pp. 25-30,155-245。
童心欣 1996. 甲烷氧化菌的分離與特性的研究。國立成功大學生物學研究所,碩士論文。pp.1-30。
吳岳隆 2001. 利用相減式雜式交法鑑定小葉浮萍受巴拉刈與銅誘之基因。國立中央大學生命科學研究所,碩士論文。pp. 19-21。
林美鳳 2000. 建立苯環化合物分解菌中苯環加氧與切割酵素之基因偵測法。國立中央大學生命科學研究所,碩士論文。pp 25-26。
陳麗玲 Phylogenetic approach of classification of the bacyeria。食品所菌種中心研究員,CCRC News. pp6-9。
楊嘉蓁 2001. Triton X-100分解菌之分離與分解酵素之特性研究。國立中央大學生命科學研究所,碩士論文。pp 36-39,45-51。
Liu, Hsin-Fu. 2001. 國家衛生研究院分子演化分析研習會講義。
Promega technical manual . pGEM-T and pGEM-T Easy Vector System.
Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews. 59:143-169.
Andreas, T., C. Water, G.Muyzer, and N. B. Ramsing. 1996. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by Most-Probable-Number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Envirm. Microbiol. 62: 1405-1415.
Brown-Howland, E. B., S. A. Danielsen, and S. A. Nierzwicki-Bauer. 1992. Development of a rapid method for detecting bacterial cells in situ using 16S-targeted probes. BioTechniques. 13: 928-933.
Busse, H. J., E. M. B. Denner, and W. Lubitz. 1996. Classfication and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J. Bact. 47: 3-38.
Cindy, H. N., and R. C. Wyndham. 1993. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase gene of Alcaligenes sp. Strain BR60. Appl. Envirm. Microbiol. 59: 3625-3633.
Chang, Y.-J., J. R. Stephen, A. P. Richter, A. D. Venosa, J. Bruggemann, S. J. Macnaughton, G. A. Kowalchuk, J. R. Haines, E. Kline, and D. C. White. 2000. Phylogentic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. Journal. Microbiol Method. 40: 19-31.
Cho, Y.-G., S.-K. Rhee, and S.-T. Lee. 2000. Effect of moisture on bioremediation of chlorophenol-contaminated. Biotechnology letters.
22: 915-919.
Claudia, S.-C., P. Guadalupe, L. Werner, and R. Sabine. 2001. An advanced molecular strategy to identify bacterial communities on art objects. Journal. Microbiol Method. 45: 77-87.
Danilo, E., M. Giancarlo, B. Giuseppe, C. Salvatore. 2001. Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis. Current Microbiol. 42:199-202
Duineveld, B. M., G. A. Kowalchuk, A. Keijzer, J. D. VAN Elsas, and J. A. VAN Veen. 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA as Well as DNA fragments coding for 16S rRNA. Appl. Envirm. Microbiol. 67: 172-178.
Felske, A., A. Wolterink, R. V. Lis, and A. D. L. Akkermans. 1998. Phylogeny of the main bacterial 16S rRNA sequences in drentse a grassland soils (The Netherlands). Appl. Envirm. Microbiol. 64: 871-879.
Ferris, M. J., G. Muyzer, and D. M. Ward. 1996 Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Envirm. Microbiol. 62: 340-346.
Friedrich, M., R. J. Grosser, E. A. Kern, W. P. Inkeep, and D. M. Ward. 2000. Effect of model sorptive phase on phenanthrene biodegradation: molecular analysis of enrichments and isolates suggest selection based on bioavailability. Appl. Envirm. Microbiol. 66: 2703-2710.
Griffiths, R. I., A. S. Whiteley, A. G. O’’Donnell, and M. J. Bailey. 2000. Rapid method for coextraction of DNA and RNA form natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Envirm. Microbiol. 66: 5488-5491.
Head, I.M., J.R. Saunders, and R.W.Pickup. 1998. Microlbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbiol Ecol. 35: 1-21.
Hideaki, M., M. Naoto, F. Yasuhiro. 1994. Degradation of alklphenol ethoxylates by Pseudomonas sp. Strain TR01. Appl. Envirm. Microbiol. 60: 2265-2271.
Ingela, D., B. Harriet, and K. Staffan. 2000. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Envirm. Microbiol. 66: 3376-3380.
Jensen, S., L. Øvreas, F. L. Daae, and V. Torsvik. 1998. Diversity in methane enrichments from an agricultural soil revealed by DGGE separation of PCR amplified 16S rDNA fragments. FEMS Microbiol Ecol. 26: 17–26.
Juck, D., T. Charles, L. G. Whyte, C. W. Greer. 2000. Polyphasic microbial community analysis of Petroleum hydrocarbon-contaminated soils from two northern Canadian. FEMS Microbiol Ecol. 33: 241-249.
Laurent, V., V. Fievez, L. Van Vooren, and W. Verstraete. 1997. The contribution of individual populations to the BIOLOG pattern of model microbial communities. FEMS Microbiol Ecol. 24: 353–362.
Marc, B., L. G. Whyte, and C. W. Greer. 1996. Rapid direct extraction of DNA from soil for PCR analysis using polyvinylpolypyrrolidone spin columns. FEMS Microbiol . lett. 138: 17-22.
Mccaig, A. E., L. A. Glover, and J. I. Prosser. 2001. Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl. Envirm. Microbiol. 67: 4554-4559.
Muyzer, G., E. C. Dewaal, and A. G. Uitterlinden. 1993. Profiling old complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Envirm. Microbiol. 59: 695-700.
Nguyen, M. H., and J-C. Sigoillot. Isolation from coastal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation. Biodegradation. 7:369-375.
Nielsen, A. T., W-T. Liu, C. Filipe, C. Filipe, L. Grady, S. Molin, and D. A. Stahl. 1999. Identification of a nolvel group of bacteria in sludge from a deteriorated biological phosphous removal reacter. Appl. Envirm. Microbiol. 65: 1251-1258.
O’Donnell, A. G, and H. E.Gorres. 1999. 16S rDNA method in soil microbiology. Environmental biotechnology. 10: 225-229.
Okeke, B. C., J. E. Smith, A. Paterson, and W.-C. Ia. 1996. Influence of environmental paraments on pentachlorophenol biotransformation in soil by Lentinula edodes and phanerochaete chrysosporium. Applied. Microbiol. Biotech. 45: 263-266.
Petrovic, M., and D. Barcelo. 2000. Determination of anionic and nonionic surfactants, their degration products, and endocrine-disrupting compounds in sewage sludge by liquid chromatography/mass spectrometry. Anal chem. 72: 4560-4567.
Roling, W. F. M., B. M. van Breukelen, M. Braster, B. Lin, and H. W. van Versevled. 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Envirm. Microbiol.67: 4619-4629.
Sabine, R., M. Gerard, W. Cathrin, W. Gerhard, and L. Werner. 1996. Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Envirm. Microbiol. 62: 2059-2065.
Said, E. F., L. Verschuere, and W. Verstraete, Mar. 1999. Effect of phenyl urea herbicides of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Envirm. Microbiol. 64: 982-988.
Satokari, R. M., E. E. Vaughan, A. L. Akkermans, M. Saarela, and W. M. DE Vos. 2001. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Envirm. Microbiol. 67: 504-513.
Snaider, J., B. Fuchs, G, Wallner, M. Wagner, M. Schleifer, and K.-H. Amann. 1999. Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environ. Microbiol. 1: 125-135.
Stanier, R. Y. G., C. Bazire, and W. R. Sistrom. 1957. Kinetics studies of pigment synthesis by non-sulfur purple bacteria. Journal. Cell. Comp. Physiol. 49: 25.
Suzuki, M. T., and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Envirm. Microbiol. 62: 625–630.
Thilo, H., F. Michael, and C. Ralf. 1999. Molecular analysis of the methane-oxidizing microbial communities in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Envirm. Microbiol.65: 1980-1990.
Trveors, J. H. 1995. Extraction and amplification of 16S rDNA genes from deep marine sediments and seawater to assess bacterial community diversity. pp.220-222. IN Nucleic acid in the environment: methods and applications. J. D. van Elsas (Eds.) Springer, D. C.
Ulrich, N., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H, Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyax detered by temperature gradient gel electrophoresis. Journal of Bacteriology. 178: 5636-5643.
Vincent, F., F. A. Rainey, and E. Stackebrandt. 1995.
Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA gene from a mixture of bacterial species. Appl. Envirm. Microbiol. 61: 2798-2801.
Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rDNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 344:63-65.
Wardle, D. A., and D. Parkinson. 1990. Effects of three herbicides on soil microbial biomass and activity. Plant Soil. 122: 21–28.
Yang, C.-H., D.E. Crowley, and J.A. Menge. 2001. 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Micro Ecol. 35: 129-136.
Zeyer, J., A. Wasserfallen, and K. N. Timmis. 1985. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl. Envirm. Microbiol. 2: 447-453.
指導教授 黃雪莉(Shir-Ley Huang) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明