博碩士論文 89224010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.145.143.239
姓名 黃瑜雯(Yu-Wen Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥根細胞核之有絲分裂原蛋白質激酶與蛋白質酪胺酸磷酸化受銅處理之變化
(Nuclear Protein Phosphorylation under Metal Stress of Copper in the Root of Arabidopsis thaliana : the Aspects of MAPKs and tyrosine phosphorylation)
相關論文
★ 利用相減式雜交法鑑定小葉浮萍受巴拉刈與銅誘導之基因★ 利用cDNA微陣列技術探討蕃茄根部組織受過量銅誘導之基因
★ 利用乳酸菌表達大腸桿菌之酸性磷酸★ 應用人類基因表現資料於基因表現關聯性之研究
★ 小葉浮萍之色胺酸合成酵素beta鏈基因選殖與色胺酸及其衍生物受銅影響之化學分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
銅是植物生長所需的微量必須元素。但是當其過量時反而會引起
逆境的產生。細胞在化學逆境如過量金屬存在之㆘,會經由特定的訊
息傳遞路徑來調控基因表現。在動物細胞㆗和逆境相關的兩個主要訊
息傳遞因子為有絲分裂原蛋白質激酶及酪胺酸蛋白質激酶。其受逆境
活化後,再活化其受質如轉錄因子,以調控特定基因的表現。在植物
㆗目前仍無探討金屬離子與有絲分裂原蛋白質激酶及酪胺酸蛋白質
酶關聯性的文獻發表。本論文是利用西方點墨法及膠內激酶活性分析
來探討在阿拉伯芥根部細胞核㆗的有絲分裂原蛋白質激酶及酪胺酸
磷酸化情形。結果偵測到㆒特定存在細胞核㆗54 kDa 的有絲分裂原
蛋白質激酶及㆕個酪胺酸磷酸化蛋白質受到過量銅處理而被磷酸
化。阿拉伯芥根部細胞經專㆒性高的有絲分裂原蛋白質激酶激酶抑制
劑-PD98059 處理後發現,此54 kDa核內有絲分裂原蛋白質激酶並不
會受到其處理而磷酸化受到抑制,所以推測其㆖游的有絲分裂原蛋白
質激酶激酶可能不為AtMEK1/ATMKK2。
摘要(英) Abstract
Copper is an essential micronutrient in plants. However, it causes
stress response when presents in excess of amount. Cells cope with such
chemical stress by signaling to the cellular responses including to activate
particular transcription factors and regulate specific gene expression in
nuclei. Two of the major stress signaling mechanisms are MAPKs and
PTKs. None of the reports have studied how excess metal manipulate
MAPKs or PTKs in plant nuclear compartment. In this thesis, using
immunochemical analyses and in-gel kinase assays results clearly
confirm the presence of a 54-kDa copper-induced nuclear MAPK and
several tyrosine phosphorylated nuclear proteins in the roots of
Arabidopsis thaliana. Treatment of PD98059 could not inactivate this
unique nuclear MAPK. This indicates that its upstream MAPKK is not
AtMEK1/AtMKK2.
關鍵字(中) ★ 阿拉伯芥
★ 有絲分裂原蛋白質激酶
★ 酪胺酸蛋白質激酶
關鍵字(英) ★ Arabidopsis thaliana
★ tyrosine phosphorylated proteins
★ MAP kinase
論文目次 目錄
中文摘要…………………………………………………………Ⅰ
英文摘要…………………………………………………………Ⅱ
目錄………………………………………………………………Ⅲ
縮寫與全名對照表……………………………………………....Ⅴ
圖目錄…………………………………………………………....Ⅵ
壹、緒論........................................................................................ 1
一、研究動機及緣由............................................................... 1
二、銅對植物的影響............................................................... 1
三、逆境與植物訊息傳遞之間的關係................................... 2
四、有絲分裂原蛋白質激酶................................................... 2
五、酪胺酸蛋白質激酶........................................................... 5
貳、材料與方法............................................................................. 8
一、阿拉伯芥培養................................................................... 8
二、根部細胞核之分離........................................................... 9
三、西方點墨法....................................................................... 9
四、膠內激酶活性分析......................................................... 12
五、有絲分裂原蛋白質激酶激酶抑制劑PD98059的使用13
六、化學藥品......................................................................... 13
七、儀器設備......................................................................... 14
參、結果....................................................................................... 15
一、阿拉伯芥根部細胞核之分離......................................... 15
二、以組蛋白H3抗體確定是否分離到阿拉伯芥細胞核.. 15
三、過量銅活化阿拉伯芥根部細胞核㆗之有絲分裂原蛋白質
激酶......................................................................................... 16
四、PD98059對有絲分裂原蛋白質激酶活性之影響......... 17
五、過量銅影響阿拉伯芥根部細胞核之酪胺酸磷酸化..... 17
肆、討論....................................................................................... 18
一、阿拉伯芥根部細胞核之分離......................................... 18
二、以組蛋白H3抗體確定分離到阿拉伯芥細胞核.......... 19
三、過量銅活化阿拉伯芥根部細胞核㆗之有絲分裂原蛋白質
激酶......................................................................................... 20
四、PD98059對有絲分裂原蛋白質激酶活性之影響......... 23
五、過量銅影響阿拉伯芥根部細胞核之酪胺酸磷酸化..... 24
伍、參考文獻............................................................................... 25
圖目錄........................................................................................... 30
附錄............................................................................................... 42
參考文獻 伍、參考文獻
N. Halfter, U. and Chua, N. H. (1994). Cloning and biochemical
characterization of a plant protein kinase the phosphorylation serine,
threonine, and tyrosine. J. Biol. Chem. 269: 31626-31629.
Asai, T. Plotnikova, J. Willmann, M. R. Chiu, W. L. Gomez-Gomez, L.
Boller, T. Ausubel, F. M. and Sheen, J. (2002). MAP kinase signalling
cascade in Arabidopsis innate immunity. Nature 415: 977 - 983.
Barizza, E. Loschiavo, F. Terzi, M. and Filippini, F. (1999). Evidence
suggesting protein tyrosine phosphorylation in plants depends on the
developmental conditions.FEBS Lett.. 26: 191-194.
Boger, P. and Sandmann, G. (1980). Copper mediated lipid peroxidation
process in phtosyntheic membrance. Plant Physiol. 66: 797-800.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal. Biochem. 72: 248-254
Clemens S. (2001). Molecular mechanisms of plant metal tolerance and
homeostasis. Planta. 212: 475-86.
Desikan, R. Clarke, A. Hancock, J. T. and Neill, S. T. (1999). H2O2
activates a MAPK kinase-like enzyme in Arabidopsis Thaliana suspension
culture. J. Exp. bot. 50: 1863-1866
Desikan, R. Clarke, A. Atherfold, P. Hancock, J. T. and Neill, S. J.
1999). Harpin induces mitogen-activated protein kinase activity during
defence responses in Arabidopsis thaliana suspension cultures. Planta 210:
103.
Desikan, R. Hancock, J. T. Ichimura, K. Shinozaki, K. and Neill, S. J.
2001). Harpin induces activation of the Arabidopsis mitogen-activated
protein kinase AtMPK4 and ATMPK6. plant Physiol. 126: 1579-1587.
Guo, Y. L. and Roux, S. J. (1995). Partial purification and characterization
of an enzyme from Pea nuclei with protein tyrosine phosphatase activity.
Plant Physiol. 107: 167-175
Gustin, M. C. Albertyn, J. Alexander, M. and davenport, K. (1998).
MAP kinase pathways in the yeast Saccharomyces cerevisiae. Micro. Mol.
Biol. Rev. 62: 1264-1300
Heldin, C. H. and Purton, M. (1998). Signal transduction. Stanley Thornes
Ltd. Wellington. pp4
Henriques, F. S. (1989). Effect of copper deficiency on the photosynthetic
apparatus of sugar beet. Plant Physiol. 135: 453-458
Henriques, F. S. and Fernandes, J. C. (1991). Biochemical, physiological,
and structutal effects of excess copper in plants. Bot. Rev. 57: 246-273
Hooper, S. Wilson, R. Paterson, H. F. and Marshall, C. J. (1998).
Nuclear export if the stress-activated protein kinase p38 mediated by its
substrate MAPKAP kinase-2. Curr. Biol. 8: 1049-1057
Hopkins, W. G. (1999). Introduction to plant physiology. John wiley &
Sons, Inc., New York. pp65-73.
Hoshi, M. Nishida, E. and Sakai, H. (1988). Activation of a
Ca2+-inhibitable protein kinase that phosphorylates microtubule-associated
protein 2 in Vitro by growth factors, phorbol esters, and serum in quiescent
cultured human fibroblasts. J. Biol. Chem. 263: 5396-5401
Huang, Y. Li, H. Gupta, R. Morris, P. C. Luan, S. and Kieber, J. J.
2000). ATMPK4, an Arabidopsis homolog of mitogen-activated protein
kinase, is activated in vitro by AtMEK1 through threonine phosphorylation.
Plant Physiol. 122: 1301-1310
Ichimura, K. Mizoguchi, T. Irie, K. Morris, P. Giraudat, J. Matsumoto,
K. Shinozaki, K. (1998). Isolation of ATMEKK1 (a MAP kinase kinase
kinase)-interacting proteins and analysis of a MAP kinase cascade in
27
Arabidopsis. Biochem. Biophys. Res. Commun. 18: 532-543
Ichimura, K. Mizoguchi, T. Yoshida, R. Yuasa, T and Shinozaki, K.
(2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinase
ATMPK4 and ATMPK6. The plnat J. 24: 655-665.
Jonak, C. Ligterink, W. and Hirt, H. (1999). MAP kinase in plant signal
transduction. Cell Mol. Life Sci. 55: 204-213
Kastori, R. Petrovic, M and Petrovic, N. (1992). Effect of excess lead,
cadmium, copper, and zine on water relations in sunflower. J. Plant Nutrition
15: 2427-2439
Kovtun, Y. Chiu, W. L. Tena, G. and Sheen, J. (2000). Functional analysis
of oxidative stress-activated mitogen-activated protein kinase cascade in
plants. Proc. Natl. Acad. Sci. USA 97: 2940-2945
Ligterink, W. Kroj, T. Nieden, U. Z. Hirt, H. and Scheel, D. (1997).
Receptor-mediated activation of a MAP kinase in pathogen defense of plants.
Science 276: 2054-2057
Lolkema, P. C. Donker, M. H. Schouten, A. J. and Ernst, W. H. O. (1984).
The possible role of metallothioneins in copper tolerance of Silene cucubalus.
Planta 162: 174-179
Luan, C. M. Gonzalez, C. A. and Trippi, V. S. (1994). Oxidative damage
caused by an excess of copper in oat leaves. Plant Cell Physiol. 35: 11-15
Marinez-Zapater, J. M. and Salinas, J. (1998). Arabidopsis protocols.
Humana Press Inc., Totowa. pp28.
Mira, H. Martinez, N. and Penarrubia, L. (2002). Expression of a
vegetative-storage-protein gene from Arabidopsis is regulated by copper,
senescence and ozone. Planta 214: 939-46
Mizoguchi, T. Hayashida, N. Yamaguchi-Shinozaki, K. Kamada, H. and
Shinozaji, K. (1993). ATMPKs: a gene family of plant MAP kinase in
Arabidopsis Thaliana. FEBS Lett. 336: 440-444
28
Ren, D. and Zhang, S. (2002). Cell death mediated by MAPK is associated
with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 4:
559-565.
Romeis, T. Zhang, S. Klessig, D. F. Hirt, H. Jones, J. D. (1999). Rapid
Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell
cultures and leaves: convergence of resistance gene, elicitor, wound, and
salicylate responses. Plant cell 11: 273-287.
Samet, J. M. Graves, L. M. Quay, J. Dailey, L. A. Devlin, R. B. Ghio, A.
J. Wu, W. Bromberg, P. A. Reed, W. (1998). Activation of MAPKs in
human bronchial epithelial cells exposed to metals. Am. J. Physiol. 275:
L551-L558
Sun, X. Majumder, P. Shioya, H. Wu, F. Kumar, S. Weichselbaum, R.
Kharbanda, S. and Kufe, D. (2000). Activation of the cytoplasmic c-Ab1
tyrosine kinase by reactive oxygen species. J boil. Chem. 18: 17237-17240
Tena, G. Asau, T. Chiu, W. L. and sheen, J. (2001). Plant
mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol.
4: 392-400
Tong, C. G. Kendrick, R. E. and Roux, S. J. (1996). Red light-induced
apperance of phosphotyrosine-like epitopes on nuclear proteins from pea
(Pisum sativum L.) Plumules. photochemistry and photobiology 64: 863-866.
Wrzaczek, M. and Hirt, H. (2001). Plant MAP kinase pathways: how many
and what for? Biol. Cell 93: 81-87
Xu, Q. Fu, H. H. Gupta, R. Luan, S. (1998). Molecular characterization of
a tyrosine-specific protein phosphatase encoded by a stress-responsive gene
in Arabidopsis. Plant Cell 10: 1769
Yuasa, T. Mizoguchi, T and Shinozaki, K (2001). Oxidative stress
activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell
Physiol. 42: 1012-1016.
Zhang, S. and Klessig, D. F. (2001). MAPK cascades in plant defense
signaling. Trends in Plant Sci. 6: 521-527
Zwerger, K. and Hirt, H. (2001). Recent advances in plant MAP kinase
signaling. J. Biol. Chem. 382: 1123-1131
指導教授 董啟功(Chii-Gong Tong) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明