博碩士論文 89224016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:18.118.200.136
姓名 唐蕙苓(Huei-Lin Tang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酵母菌轉譯起始機制的研究
(Elucidating a novel translation initiation mechanism for a eukaryotic gene)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌GRS1基因的轉譯起始機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
目前已知在原核及高等真核細胞中,少數的基因可以使用 non-ATG作為轉譯的起始密碼,但在低等真核細胞如酵母菌Saccharomyces cerevisiae卻從未發現過。我們的實驗結果顯示酵母菌只有一個alanyl-tRNA synthetase (AlaRS)的基因 (ALA1),這個基因可以同時轉譯出細胞質及粒腺體所需的AlaRS。然而在這個基因的5’端卻只有一個ATG起始密碼(即ATG1),藉由5’ RACE的方法,我們發現ALA1可以轉錄出三條長短不同的訊息RNA,其5’端分別座落在-143,-105和-54核苷酸上。點突變的結果顯示,ALA1以ATG1 為起始密碼轉譯出細胞質的AlaRS,卻以上游的二個non-AUG (即ACG-25和ACG-24)為起始密碼轉譯出較大的粒腺體AlaRS。弁鄐W這兩個ACG都可以用來作為轉譯起始密碼,但是以ACG-25為較主要的起始密碼。用西方轉漬法來測定其蛋白質的表現,也得到了一致性的結果。而這樣的結果也首次證明了在正常生理條件下酵母菌可以使用non-AUG作為轉譯起始密碼,且這項發現不但銜接了由原核生物到高等真核生物在non-AUG使用上的斷層,也讓我們對酵母菌基因表現的調控有了更深一層的認
摘要(英) Abstract
Initiation of protein translation at non-ATG codons has been shown to occur naturally, although rarely in prokaryotes and high eukaryotes, and never in yeast. In this thesis, we provide strong evidence that a non-ATG codon is used as the alternative translational start site of the yeast gene ALA1, which is the only gene in Saccharomyces cerevisiae coding for alanyl-tRNA synthetase. An in vivo functional assay shows that ALA1 is a bifunctional gene that provides both the cytoplasmic and mitochondrial functions. However, unlike most other bifunnctional genes, which contain two alternative in-frame ATG initiators, there is only one ATG codon, designated ATG1, close to the 5’-end of the ALA1open reading frame. Transcriptional mapping reveals the existence of three overlapping transcripts for ALA1, with 5’ ends at positions –143, -105, -54, respectively, relative to the “A” nucleotide of ATG. Site-specific mutagenesis shows that the cytoplasmic and mitochondrial functions of ALA1 are provided by two distinct protein products: a cytoplasmic form initiated at ATG1 and a longer mitochondrial form initiated at two in-frame non-ATG codons, ACG-25 and ACG-24. These two ACG codons function redundantly in initiation of translation. Either one can be functional in the absence of the other; however, the first ACG codon appears to play a predominant role in protein synthesis. Western blot analysis further confirms the initiator function of these two codons. This appears to be the first example in which a non-ATG codon is used physiologically as a transitional initiator in yeast.
關鍵字(中) ★ non-AUG 轉譯起始密碼 關鍵字(英) ★ alternative transcription and translation
★ leaky scanning
★ non-AUG initiator
論文目次 目 錄
目錄……………………………………………………………………………. I
圖、表目錄………………………………………………………………….. III
縮寫檢索表………………………………………………………………….. IV
中文摘要……………………………………………………………………… 1
英文摘要……………………………………………………………………… 2
第一章 緒論
I. Aminoacyl-tRNA synthetase (aaRS)的簡介…………………………. 4
1. aaRS的生化function.................................4
2. aaRS的分類……………………………………………………… 5
II. 原核與真核細胞中aminoacyl-tRNA synthetase在轉譯方式
上的差異……………………………………………………………… 5
III. 酵母菌中aaRS轉譯方式的差異…………………………………... 6
IV. 轉譯起始密碼的選擇………………………………………………... 7
1.絕大多數基因使用ATG作為轉譯起始密碼,少數則使用
non-ATG作為轉譯起始密碼……………………………………... 7
2.酵母菌中alanyl-tRNA synthetase的特性……………………….. 8
V. 研究目的………………………………………………………………9
第二章 材料與方法
一、使用之菌株、載體及培養基……………………………………… 10
二、製備少量質體DNA……………………………………………….. 11
三、限制酵素切割質體DNA………………………………………….. 12
四、鹼性去磷酸酵素(BAP)處理載體…………………………………. 12
五、接合反應 (ligation)……………………………………………….. 13
六、大腸桿菌之形質轉換(Transformation)………………K……….. 14
七、酵母菌之形質轉換(Transformation)…………………………….. 15
八、5’ RACE (rapid amplification of cDNA ends)…………………... 16
九、Site-Direct Mutagenesis…………………………………………... 18
十、互補試驗(Complementation )……………………………………. 19
十一、蛋白質製備(Protein preparation)……………………………... 20
十二、SDS-PAGE之蛋白質分子量分析……………………………... 21
十三、西方點漬法(Western blotting)…………………………………. 22
十四、蛋白質濃度的定量 (Bradford, 1976)…………………………... 24
第三章 結果
I. 一個ALA1基因轉錄多條訊息RNA………………………………. 25
II. 一個ALA1基因轉譯二個蛋白質…………………………………. 26
III. 粒腺體AlaRS使用non-AUG當轉譯起始密碼………………... 27
IV. 用西方吸漬法證明粒腺體AlaRS使用non-AUG當轉譯起
始密碼…………………………………………………………….. 29
第四章 討論……………………………………………………………….. 30
第五章 參考文獻………………………………………………………….. 32
圖表………………………………………………………………………….. 36
附錄………………………………………………………………………….. 49
圖、表目錄
圖1、Aminoacylation……………………………………………………….. 36
圖2、aaRS在細胞中的function and role…………………….. 36
圖3、one gene two products………………………………………………... 37
圖4、sequence context……………………………………………………… 37
圖5A、ALA1基因的5’序列………………………………………………... 38
圖5B、酵母菌的AlaRS與其它不同物種的細胞質AlaRS N
端序列比對………………………………………………………….. 39
圖6A、以5-FOA培養基測試各種不同的ALA1突變基因
之互補能力………………………………………………………….. 40
圖6B、以YPG培養基測試各種不同的ALA1突變基因之互補能力…… 41
圖7A、以5-FOA培養基測試各種不同的ALA1突變基因之互補能力… 42
圖7B、以YPG培養基測試各種不同的ALA1突變基因之互補能力…… 43
圖8A、ALA1 基因前端序列(-1 ~ -120 bp)作不同的突變之後lexA
基因融合所構築的質體……………………………………………. 44
圖8B、西方點漬法觀察 in vivo中蛋白質的表現……………………….... 45
表1. Class I及Class II 的分類…………………………………………….. 46
表2. Class I及Class II主要特性……………………………………………46
表3、各種不同的ALA1突變基因及其互補能力測試…………………… .47
表4、各種不同的ALA1突變基因及其互補能力測試…………………… .48
參考文獻 參考文獻
Arnez. J. G. and Moras, D. (1997) Structural and functional considerations of the amino-acylation reaction. Trends. Biochem. Sci. 22(6): 211-6.
Birnboim, H. C., and Doly, J. (1980) A rapid alkaline extraction procedure for screening recombinant plamid DNA. Nucleic acid Res. 7: 1513-1523
Bradford, M. M. (1976) A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Burbaum, J. J. and Schimmel, P. (1991) Structional relationships and the classification of aminoacyl-tRNA synthetase. Journal of Biological chemistry 266: 16965-16968
Carter, C. W. Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748
Chatton, B., Walter, P., Ebel, J.-P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
Cigan, A. M., Pabich, E. K., and Donahue, T. F. (1988) Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2964-2975.
Clements, J. M., Laz, T. M., and Sherman, F. (1988) Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4533-4536.
Cusack, S. (1997) Aminoacyl-tRNA synthetases. Current Opinion in Structural Biology 7: 881-889
Donahue, T. F. and Cigan, A. M. (1988) Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol. Cell. Biol. 8: 2955-2963
Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727-734.
Giegé, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26: 5017-5035
Imataka, H., Olsen, H. S., and Sonenberg, N. (1997) A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 16: 817-825
Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073-5080.
Kozak, M. (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87: 8301-8305.
Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870.
Kozak, M. (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(9):2482-92
Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208
Manistic, T., et al. (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory.
Martinis, S. A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) Aminoacyl-tRNA synthetase: A new image for a classical family. Biochimie 81:683-700
Martinis, S. A. and Schimmel, P. (1996) In Escherichia coli and Salmonella Cellular and Molecular Biology, ed. Neidhardt, F. C. (Am. Soc. Microbiol., Washington, DC), 2nd Ed., pp. 887-901
Maréchal-Drouard, L., Weil, J. H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Cell. Biol. 8: 115-131.
Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases The Plant Cell 8: 1027-1039
Nakai, K. and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization Trends Biochem. Sci. 24: 34-36
Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
Nett, J. H., Kessl, J., Wenz, T., and Trumpower, B. L. (2001) The AUG start codon of the Saccharomyces cerevisiae NFS1 gene can be substituted for by UUG without increased initiation of translation at downstream codons. Eur. J. Biochem. 268: 5209-5214
Pelchat, M. and Lapointe, J. (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem. Cell Biol. 77: 343-347
Ribas de Pouplana, L. and Schimmel, P. (1997) Reconstruction of quaternary structures of Class II tRNA synthetases by rational mutagenesis of a conserved domain. Biochemistry. 36: 15041-15048
Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. USA 92: 4932-4936
Sherman, F., Stewart, J. W., and Schweingruber, A. M. (1980) Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 20: 215-222.
Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266: 848-854.
Xiao, J. H., Davidson, I., Matthes, H., Garnier, J. M., and Chambon, P. (1991) Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65: 551-568
Yoon, H and Donahue, T, F. (1992) Control of translation initiation in Saccharomyces cerevisiae. Mol. Biol. 6: 1413-1419
指導教授 王健家(Chien-Chia Wang) 審核日期 2002-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明