參考文獻 |
1. Weissenhorn,W., A.Hinz, and Y.Gaudin. (2007). Virus membrane fusion. FEBS Letters 581,2150-2155.
2. Nieva,J.L. and A.Agirre. (2003). Are fusion peptides a good model to study viral cell fusion? Biochimica et Biophysica Acta-Biomembranes 1614,104-115.
3. Castano,S. and B.Desbat. (2005). Structure and orientation study of fusion peptide FP23 of gp41 from HIV-1 alone or inserted into various lipid membrane models (mono-, bi- and multibi-layers) by FT-IR spectroscopies and Brewster angle microscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1715,81-95.
4. Hunter, E., and Swanstrom, R. (1990). Retrovirus envelope glycoproteins. Curr. Top. Microbiol. Immunol. 157, 187-253.
5. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W.A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648-659.
6. Chan, D. C., and Kim, P. S. (1998). HIV entry and its inhibition. Cell 93, 681-684.
7. Chang,D.K. and S.F.Cheng. (2006). pH-dependence of intermediate steps of membrane fusion induced by the influenza fusion peptide. Biochemical Journal 396,557-563.
8. Tatulian,S.A. and L.K.Tamm. (2000). Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry 39,496-507.
9. Sackett,K. and Y.Shai. (2003). How structure correlates to function for membrane associated HIV-1 gp41 constructs corresponding to the N-terminal half of the ectodomain. Journal of Molecular Biology 333:47-58.
10. Haque,M.E., V.Koppaka, P.H.Axelsen, and B.R.Lentz. (2005). Properties and structures of the influenza and HIV fusion peptides on lipid membranes: Implications for a role in fusion. Biophysical Journal 89:3183-3194.
11. Jin,H., Leser G.P., Zhang J., and Lamb R.A. (1997). Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. Embo Journal 16:1236-1247.
12. Schwarz,G. and Beschiaschvili,G. (1989). Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Biochim. Biophys. Acta, 979, 82-80.
13. Habermann,E. (1972). Bee and wasp venoms. Science, 177, 314-322.
14. Dempsey,C.E. (1990). The actions of melittin on membranes. Biochim. Biophys. Acta, 1031, 143-161.
15. Wade,D., Andreu,D., Mitchell,S.A., Silveira,A.M., Boman,A., Boman,H.G., and Terwilliger,T.C. and Eisenberg,E. (1982). Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. J. Biol. Chem, 257, 6016-6022.
16. Schwarz,G., Zong,R. and Popescu,T. (1992). Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim. Biophys. Acta, 1110, 97-104.
17. Tosteson,M.T. and Tosteson,D.C. (1981). The sting. Melittin forms channels in lipid bilayers. Biophys. J., 36, 109-116.
18. Eytan,G.D. and Almary,T. (1983). Melittin-induced fusion of acidic liposomes. FEBS, 156, 29-32.
19. Sybille,R. (1996). Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys. Chem., 58, 75-85.
20. Ladokhin,A.S., Selsted,M.E., and White,S.H. (1997). Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys. J., 72, 1762-1766.
21. Terwilliger,T.C., Weissman,L. and Eisenberg,D. (1982). The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys. J., 37, 353-361.
22. Bazzo,R.,Tappin,M.J.,Pastore,A.,Harvey,T.S.,Carver,J.A.,and Campbell,I.D.
(1988). The structure of melittin. A 1H-NMR study in methanol. Eur. J. Biochem., 173, 139-146.
23. Hermetter,A. and Lakowicz,J.R. (1986). The aggregation state of mellitin in lipid bilayers. An energy transfer study. J. Biol. Chem., 261, 8243-8248.
24. Frey,S. and Tamm,L. (1991). Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys. J., 60, 922-930.
25. Lee,T.H., Mozsolits,H. and Aguilar,M.I. (2001). Measurement of the affinity of melittin for zwitterionic and anionic membranes using immobilized lipid biosensors. J.Peptide Res., 58, 464-476.
26. Bello,J., Bello,H.R. and Granados,E. (1982). Conformation and aggregation of melittin: dependence on pH and concentration. Biochemistry, 21, 461-465.
27. Gauldie,J., Hanson,J.M., Rumjanek,F.D., Shipolini,R.A. and Vernon,C.A. (1976). The peptide components of bee venom. Eur. J. Biochem., 61, 369-376.
28. Schubert,D., Pappert,G. and Boss,K. (1985). The nature of the stable noncovalent dimers of band 3 protein from erythrocyte membranes in solutions of Triton X-100. Biophys. J., 48, 327-329.
29. Ikura,T., Go,N., and Inagaki,F. (1991). Refined structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by 2D-NMR and distance geometry calculation. Proteins, 9, 81-89.
30. Dempsey,C.E., and Butler,G.S. (1992). Helical structure and orientation of melittin in dispersed phospholipid membranes from amide exchange analysis in situ. Biochemistry, 31, 11973-11977.
31. Anderluh,G., M.D.Serra, G.Viero, G.Guella, P.Macek, and G.Menestrina. (2003). Pore Formation by Equinatoxin II, a Eukaryotic Protein Toxin, Occurs by Induction of Nonlamellar Lipid Structures. J Biol Chem 278:45216-45223.
32. 李遠鵬 (1975) 科儀產品新知. 72, 29~35.
33. Tamm L.K. and Tatulian S.A. (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Quart. Rev.Biophy. 30, 365-429.
34. Casal, H. L. and Mantsch, H. H. (1984) Polymorphic phase behaviour of phospholipids membranes studied by infrared spectroscopy. Biochim. Biophys. Acta. 779, 381-401.
35. Mantsch, H.H. and McElhaney, R. N. (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem. Phys. Lipid 57, 213-226.
36. Casal,H. L. and McElhaney, R. N. (1990) Quantitive determination of hydrocarbon chain conformational order in bilayers of saturated phosphatidyl-cholines of various chain lengths by Fourier transform infrared spectroscopy. Biochemistry 29, 5423-5427.
37. Goni, F. M. and Arrondo, J. L. R. (1986) A study of phospholipid phosphate groups in model membranes by Fourier transform infrared spectroscopy. Faraday Discuss. Chem. Soc. 81, 117-126.
38. Gomez-Fernandez, J. C. and Villalain, J. (1998) The use of FT-IR for quantitative studies of the apparent pKa of lipid carboxyl groups and the dehydration degree of the phosphate group of phospholipid. Chem. Phys. Lipid 96, 41-52.
39. Krimm, S. and Bandekar, J. (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and protein. Adv. Protein Chem. 38, 181-365.
40. Surewicz, W. K. Mantsch, H. H. and Chapman, D. (1993) Determination of protein sccondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389-394.
41. Arrondo, J. L. R., Blanco, F. J. Serrano, L. and Goni, F. M. (1996) Infrared evidence of a β-hairpin peptide structure insolution. FEBS letters 384, 35-37.
42. Chehin, R. Iloro, I., Marcos, M. J., Villar, E., Shnyrov, V. L. and Arrondo, J. L. R. (1999) Thermal and pH-induced conformational changesof a β-sheet protein monitored by infrared spectroscopy. Biochemistry 38, 1525-1530.
43. de Jongh, H. H. J., Goormaghtigh, E. and Ruysschaert, J.-M. (1997) Amide-protein exchange of water-soluble proteins of different structural classes studied at the submolecular level by infrared spectroscopy. Biochemistry 36, 13603-13610.
44. Raussens, V., Narayanaswami, V., Gooemaghtigh, E., Ryan, R. O. and Ruysschaert, J.-M. (1996) Hydrogen/Deuterium exchange kinetics of apolipophorin-III in lipid-free and phospholipid-bound states. J. Biol. Chem. 271, 23089-23095.
45. Griebenow, K. and Kilibanov, A. M. (1995) Lyophilization-induced reversible changes in the secondary structure of proteins. Proc. Natl. Acad. Sci. USA. 92, 10969-10976.
46. Rahmelow, K., Hubner, W. and Ackermann, T. (1998) Infrared absorbances of protein side chains. Analy. Biochem. 257, 1-11.
47. Longas, M. and bBreitweiser, K. L. (1991) Sulfate composition of glycosamino-glycans determined by infrared spectroscopy. Analy. Biochem. 192, 193-196.
48. Lijour, Y. Gentric, E. Deslandes, E. and Guezennec, J. (1994) Estimation of the sulfate content of hydrothermal vent baterial polysaccharides by Fourier transform infrared spectroscopy. Analy. Biochem. 220, 244-248.
49. Grant, D., Long, W. F., Moffat, C. F. and Williamson, F. B. (1991) Infared spectroscopy of heparins suggests that the region 750-950cm-1 is sensitive to change in iduronate residue ring conformation. Biochem. J. 275, 193-197.
50. Cheng, H., Sukal, S., Callender, R. and Leyh, T. (2001) r-Phosphate protonation and pH-dependent unfolding of the Ras-GTP.Mg2+ complex. J. Biol. Chem. 276, 9931-9935.
51. El-Mabdaoui, L., Neault, f. F. and Tajmir-Riabi, H. A. (1997) Carbohydrate-nucleotide interaction. The effects of mono- and disaccharides on the solution structure of AMP, dAMP, ATP, GMP, dGTP, and GTP studied by FTIR difference spectroscopy. J. Inorg. Biochem. 65, 123-131
52. Jamin, N., Dumas, P., Moncuit, J., Fridman, W.H., Teillaud, J.L., Carr, G.L. and Williams, G.P. (1998) Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. Proc. Natl. Acad. Sci. U. S. A. 95, 4837-4840.
53. Wetzel, D. L. and LeVine, S. M. (1999) Imaging molecular chemistry with infrared microscopy. Science 285, 1224-1225.
54. Dong, A., Huang, P. and Caughey, W.S. (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29, 3303-3308.
55. Susi, H. and Byler, D. M. (1986) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130, 290-311.
56. James, D. I., Maddams, W. F. and Tooke, P. B. (1987) The use of Fourier deconvolution in infrared spectroscopy. Part I: studies with synthetic single-peak system. Appl. Spectrosc. 41, 1362-1370.
57. Moffatt, D. J. and Mantsch, H. H. (1992) Fourier resolution enhancement of infrared spectral data. Methods Enzymol. 210, 192-200.
58. Goormaghtigh, E., Raussens, V. and Ruysschaert, J.-M. (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta. 1422, 105-185.
59. Harrick N. J. (1979) Internal reflection spectroscopy. Ossining, New York.
60. Tamm, L.K. and Tatulian, S.A. (1993) Orientation of functional and nonfunctional PTS permease signal sequences in lipid bilayers. A polarized attenuated total reflection infrared study. Biochemistry 32, 7720– 7726.
61. Oberg, K.A. and Fink, A.L. (1998) A new attenuated total reflectance Fourier transform infrared spectroscopy method for the study of proteins in solution. Anal. Biochem. 256, 92-106.
62. Marsh, D., Muller, M. and Schmitt, F.J. (2000) Orientation of the infrared transition moments for an alpha-helix. Biophys J. 78, 2499-510.
63. Marsh, D. (1997) Dichroic ratios in polarized Fourier transform infrared for nonaxial symmetry of beta-sheet structures. Biophys. J. 72, 2710-2718.
64. Lafrance, C.-P., Nabet, A., Prud’homme, R. E. and Pezolet, M. (1995) On the relationship between the order parameter and the shape of orientation distributions. Can. J. Chem. 73, 1497-1505.
65. Picard, F., Buffeteau, T., Desbat, B., Auger, M. and Pezolet, M. (1999) Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy. Biophys. J. 76, 539-551.
66. Ter-Minassian-Saraga, L., Okamura, E., Umemura, J. and Takenaka, T. (1988) Fourier transform infrared-attenuated total reflection spectroscopy of hydration of dimyristoylphosphatidylcholine multibilayers. Biochim. Biophys. Acta. 946, 417-423.
67. Okamura, E., Umemura, J. and Takenaka, T. (1985) Fourier transform-infrared-attenuated total reflection spectra of dipalmitoylphosphatidylcholine monomolecular films. Biochim. Biophys. Acta. 812, 139-146.
68. Pace,C.N., F.Vajdos, L.Fee, G.Grimsley, and T.Gray. (1995). How to Measure and Predict the Molar Absorption-Coefficient of A Protein. Protein Science 4,2411-2423.
69. Okamura, E., Umemura, J. and Takenaka, T. (1986) Orientation of gramicidin D incorporated into phospholipid multibilayers: a Fourier transform infrared-attenuated total reflection spectroscopic study. Biochim. Biophys. Acta. 856, 68-75.
70. 黃維寧,眼鏡蛇心臟毒素在細胞膜形成孔洞之機制研究,國立清華大學,博士論文,民國92年
71. 陳振瑞,具生物活性寡胜肽之生化性質研究:HIV抑制物之機制及蜂毒與胞膜之作用,國立中央大學,碩士論文,民國92年 |