博碩士論文 91224004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.218.184.214
姓名 邱凡峰(Fang-Feng Chiu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
(Functional proteomic study on the metabolism and stress response ofPseudomonas nitroreducens TX1 grown on octylphenyl polyethoxylates)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應
★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因★ Pseudomonas nitroreducens TX1中二氫硫辛醯胺脫氫酶分解辛基苯酚聚氧乙基醇之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 辛基苯酚聚乙氧基醇(octylphenol polyethoxylates, OPEOn)為一非離子性之界面活性劑,鑑於此界面活性劑在環境中不易被微生物完全分解,且對於其代謝的機轉與途徑的了解非常有限,故本研究之目的為探討一株OPEOn分解菌(Pseudomonas nitroreducens TX1)異化界面活性劑和逆境反應。當此菌以0.5% OPEOn為唯一碳源生長培養,利用管柱層析法分離細胞粗萃液,以會對OPEOn產生耗氧活性之分液為次蛋白質體,再以一維和二維膠體電泳,分析P. nitroreducens TX1分別生長於OPEOn和succinate兩種碳源中所增生(up-regulation)或減少(down-regulation)之蛋白質,續以MALDI-Q-TOF及ESI-MS/MS鑑定之。P. nitroreducens TX1以0.5% OPEOn 為唯一碳源生長,而增強表現的蛋白質共計85個,被抑制表現的蛋白質有35個。其中,細菌外膜上的porin (Omp、OrpF與OmpH)被增生表現,而在periplasm中計有5個ABC運輸蛋白質(ATP binding cassette transporters)及1個運送生物高聚物(biopolymer)之TolB蛋白質的表現皆被增生,是否與此菌株運送OPEOn有關,需再驗證。此外,periplasm中quinoprotein ethanol dehydrogenase及aldehyde dehydrogenase亦增強表現,故推測OPEOn之聚乙氧基醇末端之氫氧基可能藉此兩個酵素先進行羧酸化,再進一步被切斷並形成acetate或是glyoxylate,但需再驗證。由於在三羧酸循環(TCA cycle)中之2-oxo-glutarate dehydrogenase (E1和E3)及succinyl-CoA synthetase皆被增生,且與氮代謝有關的ornithine carbamoyltransferase、argininosuccinate lyase及ornithine decarboxylase的表現皆增加,其中argininosuccinate lyase會裂解argininosuccinate而產生fumarate,以進入三羧酸循環加以利用,更加證實前述中TCA循環增強之推論。而利用acetyl-CoA為原料合成脂肪酸及某些胺基酸(如Cystein、Serine、Lysine)之部分酵素的表現被抑制,顯示同化作用被抑制,而acetyl-CoA 應會被驅動至三羧酸循環而生成還原能(reducing power)。本研究同時發現呼吸鏈中之NADH oxidoreductase (含FMN oxidoreductase)、electron transfer flavoprotein、Azurin及ATP synthase等表現亦增加,故推測上述TCA循環所生成的還原能,可經由電子傳遞鏈產生大量ATP供細胞利用或抗壓。此結果與本研究室先前發現P. nitroreucens TX1生長在0.5% OPEOn時氧氣消耗比生長於同濃度之succinate會增加3.7倍相符。又參與乙醛酸循環(Glyoxylate cycle)中之isocitrate lyase與malate synthase的表現增加,顯示細菌之醣質新生(gluconeogensis)可能由乙醛酸經glycerate pathway生成。而且,已知acetyl-CoA與NADH的增生會負回饋抑制pyruvate dehydrogenase,此亦與本研究發現Entner-Doudoroff pathway中,phosphoenolpyruvate synthase與pyruvate dehydrogenase (E1)之表現受抑制的結果符合。另外,逆境蛋白質亦被大量誘發表現,主要包括有過氧化逆境蛋白如alkyl hydroperoxide reductase (AhpC)、tellurium resistance protein (TerZ、TerE)、peroxidase及superoxide dismutase (SodB)與熱休克蛋白(GroEL、IbpA與DnaK)、ATP-dependent Clp protease binding protein (ClpB)等兩大類,過氧化逆境蛋白質保護細胞對抗過氧化之傷害,而熱休克蛋白與ClpB有協助蛋白質摺疊,並避免錯誤摺疊造成細胞傷害。另一調節控細胞鉀離子濃度之two-componet response regulator (KdpE)被增加表現,推測與維持菌體抵抗界面活性劑之環境壓力。整體而言,本研究利用蛋白質體學發現,P. nitroreducens TX1於界面活性劑存在的逆境下會誘發各種異化酵素、傳輸蛋白質以生成能量及多種常見於抗氧化和熱休克之逆境蛋白質,同時同化作用中脂肪酸與胺基酸的生成被抑制,以維持細胞存活與抗壓。
摘要(英) Octylphenol polyethoxylates (OPEOn) belongs to a nonionic surfactant family, alkylphenol polyethoxylates, which are difficult be to completely degrade in the environment. Nevertheless, the mechanism for degradation remains unclear. A Gram-nagative rod, Pseudomonas nitroreducens TX1, was previously isolated from contaminated sediment. The bacterium was able to grow on 0.05% ~20% OPEOn (Triton X-100, average n=9.5) as sole carbon source and energy. This study was aimed to investigate how P. nitroreducens TX1 metabolizes surfactant by a functional proteomics approach. OPEOn-dependent oxygen consumption activity was induced by the bacterium when grown on OPEOn as sole carbon source compared to grown on succinate. Oxygen consumption sub-proteomes were obtained from the bacterial crude extract separated by DEAE-Sepharose chromatography. Three sub-proteomes were subjected to protein by both 1D- and 2D-PAGE, and the protein spots with different expression between OPEOn- and succinate-grown sub-protemes were focused. Eighty-five up-regulated proteins and thirty-five down-regulated proteins were identified by MALDI-Q-TOF or ESI-MS/MS. The expression of outer membrane protein (porin), OrpF and OmpH, were up-regulated. Two type of transpoters, periplasmic binding proteins in ATP binding cassette transporters for transportation of polar and branch amino acids and TolB for transporting of biopolymer, were up-regulated as well. Another two periplasmic enzymes, quinoprotein ethanol dehydrogenase and aldehyde dehydrogenase, were up-regulated. The two enzymes might be related to the carboxylation of the hydroxyl terminus of the OPEOn, which was previously observed in the transformation products by strain TX1. The catabolism of OPEOn by strain TX1 was proposed by a sequential cleavage of two-carbon unit from the carboxylated ethoxylate chain to form acetate or glyoxylate. Three enzymes participated in TCA cycle, 2-oxo-glutarate dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3) and succinyl-CoA synthetase, were up-regulation. In addition, three enzymes in nitrogen metabolism, ornithine carbamoyltransferase, argininosuccinate lyase and ornithine decarboxylase, were up-regulated to form furmarate in TCA cycle. The enzymes related to the synthesis of fatty acids and some amino acids (cystein, serine, and lysine) from acetyl-CoA were down-regulation. Therefore, the increased acetyl-CoA was proposed to be driven into TCA cycle to produce reducing power. Proteins in respiratory chain, such as NADH oxidoreductase (including FMN oxidoreductase), electron transfer flavoprotein, Azurin, and ATP synthase, were also up-regulated for ATP synthesis. In our previous result, the oxygen consumption activity was induced correlating to the concentration of OPEOn (0.005~0.5%) in the growth media. Therefore, from our proteomics study, the surfactant up-regulated proteins might explain the induced OPEOn-dependent oxygen consumption in whole-cell grown on OPEOn. The enzymes in glyoxylate cycle, isocitrate lyase and malate synthase, were up-regulated, indicating the gluconeogenesis might be from glyoxlate via glycerate pathway. Generally, the increased concentration of acetyl-CoA and NADH will negatively feedback to inhibit pyruvate dehydrogenase. Therefore, we also found that the enzymes in Entner-Doudoff pathway, phosphoenolpyruvate synthase and pyruvate dehydrogenase, were observed to be down-regulated. In addition, surfactant also induced stress responsive proteins such as oxidative stress proteins, alkyl hydroperoxide reductase (AhpC), tellurium resistance protein (TerZ, TerE), peroxidase and superoxide dismutase (SodB). Other stress responsive proteins such as chaperones to mediate protein folding, heat-Shock protein (GroEL, IbpA, and DnaK), and ATP-dependent Clp protease binding protein (ClpB) were also induced. The up regulated stress responsive proteins might indicate important roles on anti-surfactant stresses. The two componet response regulator (KdpE) was up-regulated, which was proposed to be involved in the osmosis regulation. In conclusion, while OPEOn was provided to P. nitreducens TX1 as sole source of carbon and energy, the bacterium increases the expression of enzymes in catabolism and reduced those in anabolism to respond. The energy was much increased through such pathway changes. In addition, a series of anti-stress proteins were up-regulated for the survival in such a stress environment.
關鍵字(中) ★ 辛基苯酚聚乙氧基醇
★ 界面活性劑
★ 次蛋白質體
★ 鹼性區域二維電泳
★ 蛋白質體學
關鍵字(英) ★ octylphenol polyethoxylates
★ surfactant
★ sub-proteome
★ alkaline 2D
★ proteomics
論文目次 中文摘要 I
英文摘要 III
目錄 VI
表目錄 IX
圖目錄 X
名詞縮寫對照表 XIV
壹、緒論 1
一、蛋白質體學簡介 1
二、微生物逆境中之蛋白質體學 2
三、微生物分解環境污染物之蛋白質體學應用 4
四、蛋白質體學結合管柱層析分離 7
五、鹼性蛋白質之二維電泳分析 8
六、烷基苯酚聚氧乙基醇及其微生物分解 10
七、研究目的 12
貳、材料及方法 14
一、培養基與細菌品系 14
二、細菌生長曲線 15
三、次蛋白質體學之聚丙烯醯胺膠與二維電泳 15
四、蛋白質偵測方法 24
五、軟體分析電泳膠體 25
六、膠體消化 25
七、質譜儀分析與資料庫之搜尋 26
八、實驗儀器與化學藥品 27
叁、結果 30
一、辛基苯酚聚氧乙基醇影響P. nitroreducens TX1生長曲線 30
二、樣品初分離之蛋白質體學應用與辛基苯酚聚氧乙基醇耗氧活性分析 30
三、鹼性蛋白質之二維電泳分析方法的建立 31
四、聚丙烯醯胺膠圖及二維電泳圖 32
五、辛基苯酚聚氧乙烯逆境下被誘發表現之蛋白質 34
六、辛基苯酚聚氧乙基醇逆境下被抑制表現之蛋白質 42
肆、討論 44
一、P. nitroreducens TX1攝入辛基苯酚聚乙氧基醇 45
二、P. nitroreducens TX1代謝辛基苯酚聚乙氧基醇 47
三、P. nitroreducens TX1於辛基苯酚聚乙氧基醇之逆境反應 51
四、蛋白質體學與次蛋白質體學之策略 54
伍、結論與建議 55
陸、參考文獻 57
表 64
圖 88
附錄 134
參考文獻 梁福翥. 2000.Psedomonas putida SH1異化萘、酚和鄰-甲酚之蛋白質體分析. 國立中央大學生命科學所碩士論文.
楊嘉蓁. 2001. Triton-100分解菌之分離與分離酵素之特性研究. 國立中央大學生命科學所碩士論文.
徐秉正. 2003. Psedomonas nitroreducens TX1異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現. 國立中央大學生命科學所碩士論文
洪國展. 2004. 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫醯胺脫氫酶)的純化與定性. 國立中央大學生命科學所碩士論文
Abbanat, D. R., and J. G. Ferry. 1990. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J Bacteriol 172:7145-50.
Adamowicz, M., P. M. Kelley, and K. W. Nickerson. 1991. Detergent (sodium dodecyl sulfate) shock proteins in Escherichia coli. J Bacteriol 173:229-33.
Antelmann, H., C. Scharf, and M. Hecker. 2000. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol 182:4478-90.
Benz, R., and K. Bauer. 1988. Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria. Review on bacterial porins. Eur J Biochem 176:1-19.
Bernhardt, J., U. Volker, A. Volker, H. Antelmann, R. Schmid, H. Mach, and M. Hecker. 1997. Specific and general stress proteins in Bacillus subtilis--a two-deimensional protein electrophoresis study. Microbiology 143:999-1017.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54.
Brown, S. M., M. L. Howell, M. L. Vasil, A. J. Anderson, and D. J. Hassett. 1995. Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J Bacteriol 177:6536-44.
Buell, C. R., V. Joardar, M. Lindeberg, J. Selengut, I. T. Paulsen, M. L. Gwinn, R. J. Dodson, R. T. Deboy, A. S. Durkin, J. F. Kolonay, R. Madupu, S. Daugherty, L. Brinkac, M. J. Beanan, D. H. Haft, W. C. Nelson, T. Davidsen, N. Zafar, L. Zhou, J. Liu, Q. Yuan, H. Khouri, N. Fedorova, B. Tran, D. Russell, K. Berry, T. Utterback, S. E. Van Aken, T. V. Feldblyum, M. D'Ascenzo, W. L. Deng, A. R. Ramos, J. R. Alfano, S. Cartinhour, A. K. Chatterjee, T. P. Delaney, S. G. Lazarowitz, G. B. Martin, D. J. Schneider, X. Tang, C. L. Bender, O. White, C. M. Fraser, and A. Collmer. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100:10181-6.
Butt, Y. K., J. H. Lum, and S. C. Lo. 2003. Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216:762-71.
Cao, Z., and P. E. Klebba. 2002. Mechanisms of colicin binding and transport through outer membrane porins. Biochimie 84:399-412.
Chang, H. W., H. Y. Kahng, S. I. Kim, J. W. Chun, and K. H. Oh. 2004. Characterization of Pseudomonas sp. HK-6 cells responding to explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Appl Microbiol Biotechnol 65:323-9.
Chohnan, S., H. Furukawa, T. Fujio, H. Nishihara, and Y. Takamura. 1997. Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. Appl Environ Microbiol 63:553-60.
Cordwell, S. J., M. R. Larsen, R. T. Cole, and B. J. Walsh. 2002. Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology 148:2765-81.
Diehl, A., F. von Wintzingerode, and H. Gorisch. 1998. Quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa is a homodimer--sequence of the gene and deduced structural properties of the enzyme. Eur J Biochem 257:409-19.
Fava, F., P. M. Armenante, and D. Kafkewitz. 1995. Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Lett Appl Microbiol 21:307-12.
Follettie, M. T., O. P. Peoples, C. Agoropoulou, and A. J. Sinskey. 1993. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J Bacteriol 175:4096-103.
Fukumori, F., and M. Kishii. 2001. Molecular cloning and transcriptional analysis of the alkyl hydroperoxide reductase genes from Pseudomonas putida KT2442. J Gen Appl Microbiol 47:269-77.
Galvani, M., M. Hamdan, B. Herbert, and P. G. Righetti. 2001. Alkylation kinetics of proteins in preparation for two-dimensional maps: a matrix assisted laser desorption/ionization-mass spectrometry investigation. Electrophoresis 22:2058-65.
Galvani, M., L. Rovatti, M. Hamdan, B. Herbert, and P. G. Righetti. 2001. Protein alkylation in the presence/absence of thiourea in proteome analysis: a matrix assisted laser desorption/ionization-time of flight-mass spectrometry investigation. Electrophoresis 22:2066-74.
Giuffrida, M. G., E. Pessione, R. Mazzoli, G. Dellavalle, C. Barello, A. Conti, and C. Giunta. 2001. Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens, as revealed by proteome analysis. Electrophoresis 22:1705-11.
Gorg, A., C. Obermaier, G. Boguth, A. Csordas, J. J. Diaz, and J. J. Madjar. 1997. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18:328-37.
Gorg, A., C. Obermaier, G. Boguth, A. Harder, B. Scheibe, R. Wildgruber, and W. Weiss. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037-53.
Hamel, R. D., and V. D. Appanna. 2001. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens. J Inorg Biochem 87:1-8.
Hanash, S. M., J. Madoz-Gurpide, and D. E. Misek. 2002. Identification of novel targets for cancer therapy using expression proteomics. Leukemia 16:478-85.
Hartke, A., J. C. Giard, J. M. Laplace, and Y. Auffray. 1998. Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl Environ Microbiol 64:4238-45.
Hosokawa, Y., Y. Shimomura, R. A. Harris, and T. Ozawa. 1986. Determination of short-chain acyl-coenzyme A esters by high-performance liquid chromatography. Anal Biochem 153:45-9.
Hoving, S., B. Gerrits, H. Voshol, D. Muller, R. C. Roberts, and J. van Oostrum. 2002. Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2:127-34.
Hoving, S., H. Voshol, and J. van Oostrum. 2000. Towards high performance two-dimensional gel electrophoresis using ultrazoom gels. Electrophoresis 21:2617-21.
Jiang, L., L. He, and M. Fountoulakis. 2004. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317-20.
John, D. M., and G. F. White. 1998. Mechanism for biotransformation of nonylphenol polyethoxylates to Xenoestrogens in Pseudomonas putida. J Bacteriol 180:4332-8.
Kahng, H. Y., K. Cho, S. Y. Song, S. J. Kim, S. H. Leem, and S. I. Kim. 2002. Enhanced detection and characterization of protocatechuate 3,4-dioxygenase in Acinetobacter lwoffii K24 by proteomics using a column separation. Biochem Biophys Res Commun 295:903-9.
Kawai, F. 2002. Microbial degradation of polyethers. Appl Microbiol Biotechnol 58:30-8.
Kawai, F., T. Kimura, Y. Tani, H. Yamada, and M. Kurachi. 1980. Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl Environ Microbiol 40:701-5.
Keitel, T., A. Diehl, T. Knaute, J. J. Stezowski, W. Hohne, and H. Gorisch. 2000. X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J Mol Biol 297:961-74.
Kellner, R. 2000. Proteomics. Concepts and perspectives. Fresenius J Anal Chem 366:517-24.
Kim, E. A., J. Y. Kim, S. J. Kim, K. R. Park, H. J. Chung, S. H. Leem, and S. I. Kim. 2004. Proteomic analysis of Acinetobacter lwoffii K24 by 2-D gel electrophoresis and electrospray ionization quadrupole-time of flight mass spectrometry. J Microbiol Methods 57:337-49.
Kim, J. Y., K. W. Kim, H. J. Kwon, D. W. Lee, and J. S. Yoo. 2002. Probing lysine acetylation with a modification-specific marker ion using high-performance liquid chromatography/electrospray-mass spectrometry with collision-induced dissociation. Anal Chem 74:5443-9.
Kim, K. I., K. M. Woo, I. S. Seong, Z. W. Lee, S. H. Baek, and C. H. Chung. 1998. Mutational analysis of the two ATP-binding sites in ClpB, a heat shock protein with protein-activated ATPase activity in Escherichia coli. Biochem J 333 (Pt 3):671-6.
Kim, S. I., J. Y. Kim, S. H. Yun, J. H. Kim, S. H. Leem, and C. Lee. 2004. Proteome analysis of Pseudomonas sp. K82 biodegradation pathways. Proteomics 4:3610-21.
Kim, S. I., S. Y. Song, K. W. Kim, E. M. Ho, and K. H. Oh. 2003. Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1. Res Microbiol 154:697-703.
Kitagawa, M., Y. Matsumura, and T. Tsuchido. 2000. Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol Lett 184:165-71.
Krayl, M., D. Benndorf, N. Loffhagen, and W. Babel. 2003. Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3:1544-52.
Lim, E. M., S. D. Ehrlich, and E. Maguin. 2000. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21:2557-61.
Matsushita, K., E. Shinagawa, O. Adachi, and M. Ameyama. 1982. o-Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa. FEBS Lett 139:255-8.
Montgomery-Brown, J., J. E. Drewes, P. Fox, and M. Reinhard. 2003. Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment. Water Res 37:3672-81.
Nagl, S. B. 2002. Computational function assignment for potential drug targets: from single genes to cellular systems. Curr Drug Targets 3:387-99.
Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. Martins dos Santos, D. E. Fouts, S. R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R. T. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P. Chris Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, K. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, D. Stjepandic, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J. A. Eisen, K. N. Timmis, A. Dusterhoft, B. Tummler, and C. M. Fraser. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799-808.
Nickerson, K. W., and A. Aspedon. 1992. Detergent-shock response in enteric bacteria. Mol Microbiol 6:957-61.
Nimrod, A. C., and W. H. Benson. 1996. Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol 26:335-64.
Ochsner, U. A., D. J. Hassett, and M. L. Vasil. 2001. Genetic and physiological characterization of ohr, encoding a protein involved in organic hydroperoxide resistance in Pseudomonas aeruginosa. J Bacteriol 183:773-8.
Perrot, F., M. Hebraud, G. A. Junter, and T. Jouenne. 2000. Protein synthesis in Escherichia coli at 4 degrees C. Electrophoresis 21:1625-9.
Rabilloud, T. 2000. Detecting proteins separated by 2-D gel electrophoresis. Anal Chem 72:48A-55A.
Reardon, K. F., and K. H. Kim. 2002. Two-dimensional electrophoresis analysis of protein production during growth of Pseudomonas putida F1 on toluene, phenol, and their mixture. Electrophoresis 23:2233-41.
Rechinger, K. B., H. Siegumfeldt, I. Svendsen, and M. Jakobsen. 2000. "Early" protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S] methionine labeling and two-dimensional gel electrophoresis. Electrophoresis 21:2660-9.
Reichmann, P., and H. Gorisch. 1993. Cytochrome c550 from Pseudomonas aeruginosa. Biochem J 289 (Pt 1):173-8.
Rupp, M., and H. Gorisch. 1988. Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. Biol Chem Hoppe Seyler 369:431-9.
Santos, P. M., D. Benndorf, and I. Sa-Correia. 2004. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640-52.
Schmid, A., R. Benz, and B. Schink. 1991. Identification of two porins in Pelobacter venetianus fermenting high-molecular-mass polyethylene glycols. J Bacteriol 173:4909-13.
Schobert, M., and H. Gorisch. 1999. Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145 (Pt 2):471-81.
Schobert, M., and H. Gorisch. 2001. A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c(550) of the ethanol-oxidation system in Pseudomonas aeruginosa. Microbiology 147:363-72.
Scott, M. J., and M. N. Jones. 2000. The biodegradation of surfactants in the environment. Biochim Biophys Acta 1508:235-51.
Staples, C. A., J. B. Williams, R. L. Blessing, and P. T. Varineau. 1999. Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates, and nonylphenol. Chemosphere 38:2029-39.
Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959-64.
Sugimoto, M., M. Tanabe, M. Hataya, S. Enokibara, J. A. Duine, and F. Kawai. 2001. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J Bacteriol 183:6694-8.
Tajima, T., N. Yokota, S. Matsuyama, and H. Tokuda. 1998. Genetic analyses of the in vivo function of LolA, a periplasmic chaperone involved in the outer membrane localization of Escherichia coli lipoproteins. FEBS Lett 439:51-4.
Tang, H., T. Peng, and F. Wong-Staal. 2002. Novel technologies for studying virus-host interaction and discovering new drug targets for HCV and HIV. Curr Opin Pharmacol 2:541-7.
Teixeira-Gomes, A. P., A. Cloeckaert, and M. S. Zygmunt. 2000. Characterization of heat, oxidative, and acid stress responses in Brucella melitensis. Infect Immun 68:2954-61.
Toptchieva, A., G. Sisson, L. J. Bryden, D. E. Taylor, and P. S. Hoffman. 2003. An inducible tellurite-resistance operon in Proteus mirabilis. Microbiology 149:1285-95.
van Overbeek, L. S., L. Eberl, M. Givskov, S. Molin, and J. D. van Elsas. 1995. Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil. Appl Environ Microbiol 61:4202-8.
Washburn, M. P., and J. R. Yates, 3rd. 2000. Analysis of the microbial proteome. Curr Opin Microbiol 3:292-7.
Wu, S. L., H. Amato, R. Biringer, G. Choudhary, P. Shieh, and W. S. Hancock. 2002. Targeted proteomics of low-level proteins in human plasma by LC/MSn: using human growth hormone as a model system. J Proteome Res 1:459-65.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2005-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明