參考文獻 |
[1] Fujishima, A.; Honda, K. “Electrochemical photolysis of water at a semiconductor electrode.” Nature [London, United Kingdom] 1972, 238, 37-38.
[2] Goeringer, S.; Chenthamarakshan, C. R.; Rajeshwar, K. “Synergistic photocatalysis mediated by TiO2: mutual rate enhancement in the photoreduction of Cr (VI) and Cu(II) in aqueous media.” Electrochemistry Communications 2001, 3, 290-292.
[3] Wu, C.; Tzeng, L.; Kuo, Y.; Shu, C. H. “Enhancement of the photocatalytic activity of TiO2 film via surface modification of the substrate.” Applied Catalysis, A: General 2002, 226, 199-211.
[4] Graetzel, M.; “Energy Resources through Photochemistry and Catalysis.” New York, 1983, 573.
[5] Fujishima, A.; Rao, T. N.; Tryk, D. A. “TiO2 photocatalysts and diamond electrodes.” Electrochimica Acta 2000, 45, 4683-4690.
[6] Diebold, U. “The surface science of titanium dioxide.” Surface Science Reports. 2003, 48, 53-229.
[7] 垰田博史著,張晶、楊健譯 光觸媒圖解, 2003.
[8] “Anonymous In Phase Diagrams for Ceramists Figure” The American Ceramic Society, Inc. 1975, 76, 4150.
[9] Yamashita, H.; Nishiguchi, H.; Kamada, N.; Anpo, M.; Teraoka, Y.; Hatano, H.; Ehara, S.; Kikui, K.; Palmisano, L.; et al “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts.” Research on Chemical Intermediates 1994, 20, 815-823.
[10] Bard, A. J.; In Integrated Chemical Systems; John Wiley & Sons, Inc. New York, 1994, 279.
[11] Linsebigler, A. L.; Lu, G.; Yates, J. T. Jr “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results.” Chemical Reviews [Washington, D.C.] 1995, 95, 735-758.
[12] Zhang, Z.; Wang, C.; Zakaria, R.; Ying, J. Y. “Role of Particle Size in Nano crystalline TiO2-Based Photocatalysts.” Journal of Physical Chmistry B 1998, 102, 10871-10878.
[13] Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders.” Nature (London, United Kingdom) 1979, 277, 637-638.
[14] Hori, H.; Ishitani, O.; Koike, K.; Johnson, F. P. A.; Ibusuki, T. “Efficient carbon dioxide photoreduction by novel metal complexes and its reaction mechanisms.” Energy Conversion and Management 1995, 36, 621-624.
[15] Serpone, N.; Lawless, D.; Khairutdinov, R. “Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles:Size Quantization versus Direct Transitions in This Indirect Semiconductor.” Journal of Physical Chmistry 1995, 99, 16646-16654.
[16] Zhang, Z.; Wang, C.; Zakaria, R.; Ying, J. Y. “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts.” Journal of Physical Chmistry B 1998, 102, 10871-10878.
[17] Song, K. Y.; Kwon, Y. T.; Choi, G. J.; Lee, W. I. “Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper.” Bulletin of the Korean Chemical Society 1999, 20, 957-960.
[18] Yamamura, S.; Kojima, H.; Iyoda, J.; Kawai, W. “Formation of Ethyl-Alcohol in the Photocatalytic Reduction of Carbon-Dioxide by SiC and ZnSe Metal Powders.” Journal of Electroanalytical Chemistry 1987, 225, 287-290.
[19] Inoue, H.; Moriwaki, H.; Maeda, K.; Yoneyama, H. “Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals.” Journal of Photochemistry and Photobiology, A : Chemistry 1995, 86, 191-196.
[20] Sugawa, S.; Sayama, K.; Okabe, K.; Arakawa, H. “Methanol synthesis from CO2 and H2 over silver catalyst.” Energy Conversion and Management 1995, 36, 665-668.
[21] Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves.” Catalysis Today 1998, 45, 221-227.
[22] Kohno, Y.; Hayashi, H.; Takenaka, S.; Tanaka, T.; Funabiki, T.; Yoshida, S. “Photoenhanced reduction of carbon dioxide with hydrogen over Rh/TiO2.” Journal of Photochemistry and Photobiology, A: Chemistry 1999, 126, 117-123.
[23] Ichikawa, S. “Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis.” Energy Conversion and Management 1995, 36, 613-616.
[24] Henglein, A.; Gutierrez, M.; Fischer, C. H. “Photochemistry of colloidal metal sulfides Kinetics of interfacial reactions at zinc sulfide particles.” Berichte der Bunsen-Gesellschaft 1984, 88, 170-175.
[25] Liu, B.; Torimoto, T.; Matsumoto, H.; Yoneyama, H. “Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrixes.” Journal of Photochemistry and Photobiology, A: Chemistry 1997, 108, 187-192.
[26] Yoneyama, H. “Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution.” Catalysis Today 1997, 39, 169-175.
[27] Choi, W.; Termin, A.; Hoffmann, M. R. “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics.” Journal of Physical Chmistry 1994, 98, 13669-13679.
[28] Wilke, K.; Breuer, H. D. “The influence of transition metal doping on the physical and photocatalytic properties of titania.” Journal of Photochemistry and Photobiology, A: Chemistry 1999, 121, 49-53.
[29] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. “Visible-light photocatalysis in nitrogen-doped titanium oxides.” Science [Washington, DC, United States] 2001, 293, 269-271.
[30] Lobedank, J.; Bellmann, E.; Bendig, J. “Sensitized photocatalytic oxidation of herbicides using natural sunlight.” Journal of Photochemistry and Photobiology, A : Chemistry 1997, 108, 89-93.
[31] Nasr, C.; Vinodgopal, K.; Fisher, L.; Hotchandani, S.; Chattopadhyay, A. K.; Kamat, P. V. "Environmental Photochemistry on Semiconductor Surfaces. “Visible Light Induced Degradation of a Textile Diazo Dye, Naphthol Blue Black, on TiO2 Nanoparticles.” Journal of Physical Chmistry 1996, 100, 8436-8442.
[32] Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. “Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures.” Journal of the American Chemical Society 1998, 120, 6024-6036.
[33] Herrmann, J. M.; Mansot, J. L. “Analytical TEM study of the selective photocatalytic deposition of platinum on titania-silica mixtures and silica supported titania.” Journal of Catalysis 1990, 121, 340-348.
[34] Augugliaro, V.; Loddo, V.; Marci, G.; Palmisano, L.; Lopez-Munoz, M. J. “Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions.” Journal of Catalysis 1997, 166, 272-283.
[35] Herrmann, J. .; Tahiri, H.; Guillard, C.; Pichat, P. “Photocatalytic degradation of aqueous hydroxybutanedioic acid [malic acid] in contact with powdered and supported titania in water.” Catalysis Today 1999, 54, 131-141.
[36] Romeas, V.; Pichat, P.; Guillard, C.; Chopin, T.; Lehaut, C. “Testing the Efficacy and the Potential Effect on Indoor Air Quality of a Transparent Self-Cleaning TiO2-Coated Glass through the Degradation of a Fluoranthene Layer.” Industrical & Engineering Chemistry Research 1999, 38, 3878-3885.
[37] Lassaletta, G.; Fernandez, A.; Espinos, J. P.; Gonzalez-Elipe, A. R. “Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition.” Journal of Physical Chmistry 1995, 99, 1484-1490.
[38] Zhe, D.; Hu, X.; Yue, P. L.; Lu, G. Q.; Greenfield, P. F. “Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition.” Catalysis Today 2001, 68, 173-182.
[39] Davis, R. J. “Synthesis and characterization of VPI-5-supported titania clusters.” Chemistry of Materials 1992, 4, 1410-1415.
[40] Xu, Y.; Langford, C. H. “Photoactivity of Titanium Dioxide Supported on MCM41, Zeolite X, and Zeolite Y.” Journal of Physical Chmistry B 1997, 101, 3115-3121.
[41] Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves.” Catalysis Today 1998, 45, 221-227.
[42] Aronson, B. J.; Blanford, C. F.; Stein, A. “Solution-Phase Grafting of Titanium Dioxide onto the Pore Surface of Mesoporous Silicates: Synthesis and Structural Characterization.” Chemistry of Materials 1997, 9, 2842-2851.
[43] Sakata, T.; Kawai, T. “Photosynthesis and photocatalysis with semiconductor powders.” Energy Resources through Photochemistry and Catalysis. 1983, 331-358.
[44] Ibusuki, T.; Takeuchi, K. “Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis.” Journal of Molecular Catalysis 1994, 88, 93-102.
[45] Takeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H. “Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde."Journal of Physical Chmistry 1995, 99, 9986-9991.
[46] Chien, S.; Kuo, M.; Lu, C.; Lu, K. “Spectroscopic studies of NO reduction on Pt/TiO2 catalysts.” Catalysis Today 2004, 97, 121-127.
[47] Ward, W. J. III; Le Blanc, O. H.,Jr “Rayleigh-Benard convection in an electrochemical redox cell.” Science (Washington, DC, United States) 1984, 225, 1471-1473.
[48] Ying, J. Y.; Mehnert, C. P.; Wong, M. S. “Synthesis and applications of supramolecular-templated mesoporous materials.” Angewandte Chemie, International Edition 1999, 38, 56-77.
[49] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.” Nature (London, United Kingdom) 1992, 359, 710-712.
[50] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; et al “A new family of mesoporous molecular sieves prepared with liquid crystal templates.” Journal of the American Chemical Society 1992, 114, 10834-10843.
[51] Hartmann, M.; Poeppl, A.; Kevan, L. “Ethylene Dimerization and Butene Isomerization in Nickel-Containing MCM-41 and Al/MCM-41 Mesoporous Molecular Sieves: An Electron Spin Resonance and Gas Chromatography Study.” Journal of Physical Chmistry 1996, 100, 9906-9910.
[52] Chakraborty, B.; Pulikottil, A. C.; Viswanathan, B. “Alkylation of naphthalene with alcohols over mesoporous MCM-41.” Catalysis Letters 1996, 39, 63-65.
[53] Wu, C. G.; Bein, T. “Conducting polyaniline filaments in a mesoporous channel host.” Science (Washington, DC, United States) 1994, 264, 1757-9.
[54] Wu, C.; Bein, T. “Conducting carbon wires in ordered, nanometer-sized channels.” Science (Washington, D.C.) 1994, 266, 1013-1015.
[55] Lee, Y. S.; Surjadi, D.; Rathman, J. F. “Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates.” Langmuir 1996, 12, 6202-6210.
[56] Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C.; Sadler, P. J. “Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity.” Journal of the Chemical Society, Chemical Communications 1995, 1803-1804.
[57] Neumann, R.; Khenkin, A. M. “Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides.” Chemical Communications (Cambridge) 1996, 2643-2644.
[58] Corma, A.; Navarro, M. T.; Perez-Pariente, J.; Sanchez, F. “Preparation and properties of Ti-containing MCM-41.” Studies in Surface Science and Catalysis 1994, 84, 69-75.
[59] Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L.; et al “Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications.” Chemistry of Materials 1994, 6, 2317-2326.
[60] Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; Sheppard, E. W. “Designed synthesis of mesopore molecular sieve systems using surfactant directing agents.” Preprints - American Chemical Society, Division of Petroleum Chemistry 1995, 40, 21-25.
[61] Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; Sheppard, E. W. “Designed synthesis of mesoporous molecular sieve systems using surfactant-directing agents.” Advanced Catalysts and Nanostructured Materials 1996, 1-19.
[62] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Frederickson, G. H.; Chmelka, B. F.; Stucky, G. D. “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.” Science (Washington, D.C.) 1998, 279, 548-552.
[63] Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. “Block copolymer-templated mesoporous oxides.” Current Opinion in Colloid & Interface Science 2003, 8, 109-126.
[64] Imperor-Clerc, M.; Davidson, P.; Davidson, A. “Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers.” Journal of the American Chemical Society 2000, 122, 11925-11933.
[65] Zhao, D.; Yang, P.; Chmelka, B. F.; Stucky, G. D. “Multiphase Assembly of Mesoporous-Macroporous Membranes.” Chemistry of Materials 1999, 11, 1174-1178.
[66] Lin, H.; Cheng, Y.; Mou, C. “Hierarchical Order in Hollow Spheres of Mesoporous Silicates.” Chemistry of Materials 1998, 10, 3772-3776.
[67] Lin, H.; Mou, C. “Tubules-within-a-tubule hierarchical order of mesoporous molecular sieves in MCM-41.” Science (Washington, D.C.) 1996, 273, 765-768.
[68] Shio, S.; Kimura, A.; Yamaguchi, M.; Yoshida, K.; Kuroda, K. “Morphological control of ordered mesoporous silica: formation of fine and rod-like mesoporous powders from completely dissolved aqueous solutions of sodium metasilicate and cationic surfactants.” Chemical Communications (Cambridge) 1998, 2461-2462.
[69] Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D. “Morphological Control of Highly Ordered Mesoporous Silica SBA-15.” Chemistry of Materials 2000, 12, 275-279.
[70] Huo, Q.; Zhao, D.; Feng, J.; Weston, K.; Buratto, S. K.; Stucky, G. D.; Schacht, S.; Schuth, F. “Room-temperature growth of mesoporous silica fibers. A new high-surface-area optical waveguide.” Advanced Materials (Weinheim, Germany) 1997, 9, 974-978.
[71] Yang, P.; Zhao, D.; Chmelka, B. F.; Stucky, G. D. “Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers.” Chemistry of Materials 1998, 10, 2033-2036.
[72] Chen, B.; Lin, H.; Chao, M.; Mou, C.; Tang, C. “Mesoporous silica platelets with perpendicular nanochannels via a ternary surfactant system.” Advanced Materials (Weinheim, Germany) 2004, 16, 1657-1660.
[73] Fukuoka, A.; Miyata, H.; Kuroda, K. “Alignment control of a cyanine dye using a mesoporous silica film with uniaxially aligned meso-channels.” Chemical Communications (Cambridge, United Kingdom) 2003, , 284-285.
[74] Wang, D.; Zhou, W. L.; McCaughy, B. F.; Hampsey, J. E.; Ji, X.; Jiang, Y.; Xu, H.; Tang, J.; Schmehl, R. H.; O'Connor, C.; Brinker, C. J.; Lu, Y. “Electrodeposition of metallic nanowire thin films using mesoporous silica templates.” Advanced Materials (Weinheim, Germany) 2003, 15, 130-133.
[75] Morey, M. S.; O'Brien, S.; Schwarz, S.; Stucky, G. D. “Hydrothermal and Postsynthesis Surface Modification of Cubic, MCM-48, and Ultralarge Pore SBA-15 Mesoporous Silica with Titanium.” Chemistry of Materials 2000, 12, 898-911.
[76] Sinha, A. K.; Seelan, S.; Akita, T.; Tsubota, S.; Haruta, M. “Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes.” Applied Catalysis, A : General 2003, 240, 243-252.
[77] Zheng, S.; Gao, L.; Zhang, Q.; Guo, J. “Synthesis, characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41.” Journal of Materials Chemistry 2000, 10, 723-727.
[78] Hsien, Y.; Chang, C.; Chen, Y.; Cheng, S. “Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves.” Applied Catalysis, B: Environmental 2001, 31, 241-249.
[79] Van Grieken, R.; Sotelo, J. L.; Martos, C.; Fierro, J. L. G.; Lopez-Granados, M.; Mariscal, R. “Surface modified amorphous titanosilicate catalysts for liquid phase epoxidation.” Catalysis Today 2000, 61, 49-54.
[80] Kang, M.; Hong, W.; Park, M. “Synthesis of high concentration titanium-incorporated nanoporous silicates (Ti-NPS) and their photocatalytic performance for toluene oxidation.” Applied Catalysis, B: Environmental 2004, 53, 195-205.
[81] Corma, A.; Navarro, M. T.; Perez Pariente, J. “Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons.” Journal of the Chemical Society, Chemical Communications 1994, 147-148.
[82] Chen, Y.; Huang, Y.; Xiu, J.; Han, X.; Bao, X. “Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves.” Applied Catalysis, A: General 2004, 273, 185-191.
[83] Prairie, M. R.; Evans, L. R.; Stange, B. M.; Marlinez, S. L. “An Investigation of Ti02 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals” Environmental Science & Technology, 1999, 27, 1776-1782
[84] 曾亮鋒 新式二氧化鈦觸媒膜的製備, 中央大學化學研究所, 桃園, 2000.
[85] 葉世墉 二氧化鈦的合成與光催化性質的研究, 中央大學化學工程與材料工程研究所, 桃園, 2005.
[86] Visser, T.; Nijhuis, T. A.; Eerden, M. J.; Jenken, K.; Ji, Y.; Bras, W.; Nikitenko, S.; Ikeda, Y.; Lepage, M.; Weckhuysen, B. M. “Promotion Effects in the Oxidation of CO over Zeolite-Supported Pt Nanoparticles.” Journal of Physical Chmistry B, 2005, 109, 3822-3831.
[87] Mergler, Y. J.; Hoebink, J.; Nieuwenhuys, B. E. “CO Oxidation over a Pt/CoOx/SiO2 Caalyst:A Study Using Temporal Analysis of Products.” Journal of Catalysis 1997, 167, 305-313.
[88] Bollinger, M. A.; Vannice, M. A. “A Kinetic and DRIFTS study of low temperature carbon monoxide over Au-TiO2 catalysts.” Applied Catalysis, B: Environmental 1996, 8, 417-443.
[89] Zhang, W.; Lu, J.; Han, B.; Li, M.; Xiu, J.; Ying, P.; Li, C. “Direct Synthesis and Characterization of Titanium-Substituted Mesoporous Molecular Sieve SBA-15.” Chemistry of Materials 2002, 14, 3413-3421.
[90] 呂卦南 二氧化鈦擔體鉑與銠觸媒之研究:光催化製備法、擔體效應與一氧化碳及一氧化氮之吸附與反應, 國立台灣大學化學系, 台北, 1995.
[91] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984).” Pure and Applied Chemistry 1985, 57, 603-619.
[92] Henlein, A. “Small-particle research : Physicochemical properties of extremely small colloidal metal and semiconductor particle.” Chemical Review 1989, 89, 1861-1873.
[93] Ku, Y.; Lee, W. H.; Wang, W. Y. “Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process” Journal of Molecular Catalysis A: Chemical, 2004, 212, 191-196. |