博碩士論文 963203604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.226.88.141
姓名 阮文宏(Nguyen Van)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 由熱毛細對流所造成非融合現象之數值模擬分析研究
(Numerical Computation of Noncoalescence Phenomenon Induced by Thermocapillary Convection)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) In this thesis, the noncoalescence phenomenon of two silicone oil droplets induced by thermocapillary convection is numerically investigated by the finite element method. The Arbitrary Lagrangian-Eulerian and conservative level set methods are used to trace the moving and deforming droplet/air interface. The noncoalescence is attributed to the existence a self-lubricating air film between two droplets to separate them from coming into contact, which is generated by the thermocapillary convection. The effect of temperature difference, interstitial film thickness between the two droplets, and silicone-oil viscosity on the ability of thermocapillary convection in the coalescent suppression is considered.
The numerical results indicate that the thermocapillary convection affects the deformation of the droplet shape. The ability of thermocapillary convection can be enhanced by the increase of the temperature difference or the reduction of the interstitial film thickness and the decrease of the liquid viscosity. The deformation of droplet/air interfaces might also be enlarged with the stronger thermocapillary convection. Moreover, the air velocity swept by the motion of silicone-oil into the lubricating air film would be higher and hence, the coalescencing suppression is improved.
摘要(英) In this thesis, the noncoalescence phenomenon of two silicone oil droplets induced by thermocapillary convection is numerically investigated by the finite element method. The Arbitrary Lagrangian-Eulerian and conservative level set methods are used to trace the moving and deforming droplet/air interface. The noncoalescence is attributed to the existence a self-lubricating air film between two droplets to separate them from coming into contact, which is generated by the thermocapillary convection. The effect of temperature difference, interstitial film thickness between the two droplets, and silicone-oil viscosity on the ability of thermocapillary convection in the coalescent suppression is considered.
The numerical results indicate that the thermocapillary convection affects the deformation of the droplet shape. The ability of thermocapillary convection can be enhanced by the increase of the temperature difference or the reduction of the interstitial film thickness and the decrease of the liquid viscosity. The deformation of droplet/air interfaces might also be enlarged with the stronger thermocapillary convection. Moreover, the air velocity swept by the motion of silicone-oil into the lubricating air film would be higher and hence, the coalescencing suppression is improved.
關鍵字(中) 關鍵字(英) ★ Thermocapillary convection
★ Noncoalescence
論文目次 Abstract. i
Table of contents. ii
Figure captions. iv
Table captions. vii
Nomenclature. viii
Chapter 1. Introduction. 1
1.1 Overview of noncoalescence phenomenon induced by
thermocapillary convection. 1
1.2 Objective and scope of the thesis. 5
Chapter 2. Physical Problems. 6
2.1 Model description. 6
2.2 Mathematical formulations. 7
2.3 Initial and boundary conditions. 8
Chapter 3. Computational Method. 9
3.1 Numerical methods for tracking interface. 9
3.2 The conservative level set method. 10
3.3 The moving mesh (ALE) method. 12
3.4 Computational tool. 14
3.5 Solving processes. 14
3.6 Convergent test. 16
3.7 The cases for computation. 16
Chapter 4. Results and Discussions. 18
4.1 The effect of temperature differences. 20
4.2 The effect of reducing interstitial film thickness. 23
4.3 The effect of different silicone-oil viscosities. 25
Chapter 5. Conclusion. 27
Chapter 6. References. 28
參考文獻 1. G. P. Neitzel, P. Dell’Aversana, “Noncoalescence and nonwetting behavior of liquids”, Annu. Rev. Fluid Mech. 34, (2002), pp. 267–289
2. M. K. Smith, G. P. Neitzel, “Multiscale modelling in the numerical computation of isothermal non-wetting”, J. Fluid Mech. 554, (2006), pp. 67–83
3. L. G. Napolitano, R. Monti, G. Russo, “Marangoni Convection in One and Two Liquids Floating Zones”, Naturwissenschaften 73, (1986), pp. 352-355
4. P. Dell’aversana, R. Monti, F. Gaeta, “Marangoni flows and coalescence phenomena in microgravity”, Adv. Space Res. 16, (1995), pp. 95-98
5. P. Dell’Aversana, J. R. Banavar, J. Koplik, “Suppression of coalescence by shear and temperature gradients”, Phys. Fluids 8, (1996), pp. 15–28
6. R. Monti, R. Savino, S. Tempesta, “Wetting prevention by thermal Marangoni effect. Experimental and numerical simulation”, Eur. J. Mech. B 17, (1998), pp. 51-77
7. L. B. S. Sumner, A. M. Wood, G. P. Neitzel, “Lubrication analysis of thermocapillary-induced nonwetting”, Phys. Fluids 15, (2003), pp. 2923-2933
8. R. Savino, F. Nota, S. Fico, “Wetting and coalescence prevention of drops in a liquid matrix. Ground and parabolic flight results”, International Journal of Microgravity, Science and Technology 14, (2003), pp. 3-12
9. P. Dell’Aversana, G. P. Neitzel, “Behavior of noncoalescing and nonwetting drops in stable and marginally stable states”, Exp. Fluids 36, (2004), pp. 299–308
10. J. C. Chen, C. W. Kuo, G. P. Neitzel, “Numerical simulation of thermocapillary nonwetting”, International Journal of Heat and Mass Transfer 49, (2006), pp. 4567–4576
11. G. P. Neitzel, P. Dell’aversana, V. Tontodonato, M. R. Vetrano, “Principles, limits and microgravity applications of self lubricated liquids”, Microgravity Res. Appl. Phys. Sci. Biotech., Proceedings of the First Int. Symp., Sorrento, Italy, (2000)
12. C. W. Kuo, J. C. Chen, G. P. Neitzel, “Numerical simulation of isothermal nonwetting”, Int. J. Numer. Meth. Fluids 53, (2007), pp. 257–275
13. P. Dell’Aversana, V. Tontodonato, L. Carotenuto, “Suppression of coalescence and of wetting: The shape of the interstitial film”, Phys. Fluids 9, (1997), pp. 2475–2485
14. P. Dell’Aversana, G. P. Neitzel, “When liquids stay dry”, Physics Today 51, (1998), pp. 38–41
15. R. Savino, R. Monti, F. Nota, R. Fortezzab, L. Carotenuto, C. Piccolo, “Preliminary results of the sounding rocket experiment on wetting and coalescence prevention by Marangoni effect”, Acta Astronautica 55, (2004), pp. 169–179
16. R. Monti, R. Savino, “Correlation between experimental results and numerical solutions of the Navier–Stokes problem for noncoalescing liquid drops with Marangoni effects”, Phys. Fluids 9, (1997), pp. 260–262
17. R. Savino, R. Monti, “Modelling of noncoalescing liquid drops in the presence of thermocapillary convection”, Meccanica 32, (1997), pp. 115–133
18. P. Gennes, F. Brochard-Wyart, D. Quere, “Capillarity and wetting phenomenon”, Translated by Axel Reisinger, Springer-Verlag, New York, (2004)
19. S. Ostrach, “Low-gravity fluid flow”, Annu. Rev. Fluid Mech. 14, (1982), pp. 313–345
20. W. J. Rider, D. B. Kothe, “Reconstructing Volume Tracking”, J. Computational Physics 141, (1998), pp. 112–152
21. S. O. Univerdi, G. Tryggvason, “A front tracking method for viscous, incompressible, multi-fluid flows”, J. Computational Physics 100, (1992), pp. 25–37
22. J. A. Sethian, P. Smereka, “Level set methods for fluid interfaces”, Annu. Rev. Fluid Mech. 35, (2003), pp. 341–72
23. W. B. J. Zimmerman, “Multiphysics modeling with finite element mehods”, World Scientific Publishing Co. Pte. Ltd, Series A, Vol. 18, (2006)
24. E. Olsson, G. Kreiss, “A conservative level set method for two phase flow”, Journal of Computational Physics 210, (2005), pp. 225–246
25. E. Olsson, G. Kreiss, “A conservative level set method for two phase flow II”, Journal of Computational Physics 225, (2007), pp. 785-807
26. COMSOL Multiphysics 3.4, Chemical Engineering
27. E. Uzgoren, R. Singh, J. Sim, W. Shyy, “Computational modeling for multiphase flows with spacecraft application”, Progress in Aerospace Sciences 43, (2007), pp. 138–192
28. S. Ganesan, L. Tobiska, “Computations of flows with interfaces using arbitrary Lagrangian-Eulerian method”, Proceedings of the ECCOMAS CFD, Egmond aan Zee, The Netherlands, (2006)
29. F. Nobile, “Numerical approximation of fluid-structure interaction problems with application to haemodynamics”, PhD Thesis, École Polytechnique Fédérale de Lausanne, Switzerland, (2001)
30. D. Hectors, E. Toorman, K. V. Reusel, “Modelling of levitation melting using a fixed mesh method”, International Scientific Colloquium, Hannover, (2008)
31. COMSOL Multiphysics 3.4, Modeling Guide
32. COMSOL Multiphysics 3.4, User’s Guide
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2010-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明