博碩士論文 92224012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.133.108.241
姓名 李彩鳳(Chai-Fong Lee)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
(Mutation in the homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1 mutant)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位
★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制
★ 阿拉伯芥突變種hit2之位址定位★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究
★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位
★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究
★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現
★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 植物是固著性生物,無法自行選擇生長的環境,所以研究植物如何抵抗逆境是一門很重要的課題。高溫及水份逆境是兩種主要影響植物生長與發育的因子,也經常同時發生,顯示出植物對這兩種逆境的反應及基因的表現有程度上的關連性。之前的研究已知,阿拉伯芥hit1突變株喪失了對高溫及水份逆境的正常耐受性。為了找出造成此性狀的遺傳因子,進而探索植物在面對此兩種逆境時的反應,本研究遂利用基因定位的方式,標定出突變點位於登錄序號At1g50500之基因上。將阿拉伯芥野生型HIT1基因轉殖至hit1突變株後可將突變株之性狀恢復為野生型,確認了HIT1基因影響阿拉伯芥抵抗高溫及水份逆境的角色。HIT1基因經過轉譯,可得一帶有到829個胺基酸之蛋白質,序列比對之結果顯示其與酵母菌Vps53p蛋白質有最高的相似度。Vps53p蛋白質在酵母菌中扮演著繫栓因子(tethering factor)的角色,與Vps52p及Vps54p共構成聚合體,參與將微粒體(vesicles)運往late Golgi的工作。酵母菌若喪失Vps53p,其生長速率在37度C的高溫下會比野生型緩慢許多。該下降之生長速率可藉由阿拉伯芥HIT1基因之殖入而得部份之補償,顯示阿拉伯芥HIT1與酵母菌Vps53p蛋白質具有若干相類似之生理功能。綜合言之,本研究率先將繫栓因子與高等植物之高溫及水份逆境耐受性連結在一起,而阿拉伯芥hit1突變株則可作為此一新研究範疇的材料。
摘要(英) High temperature and water stress are two major abiotic factors that often affect plant growth simultaneously in the field, implying plant responses to these stresses may be interconnected. Previously, the growth of Arabidopsis hit1-1 (heat-intolerant) mutant was found to be inhibited by both heat and water stress. In order to determine the genetic lesion underlying the hit1-1 phenotype, map-based cloning of HIT1 gene was conducted. Transformation of the hit1-1 mutant with a HIT1 cDNA clone can reverts the mutant to tolerant phenotype, confirming the identity of HIT1. Sequence analysis revealed the HIT1 gene encodes a protein of 829 amino acid residues and is homologous to yeast (Saccharomyces cerevisiae) Vps53p protein. The yeast Vps53p protein has been shown to be a tethering factor that associates with Vps52p and Vps54p in a complex formation involving in the retrograde trafficking of vesicles to the late Golgi. The growth of yeast Vps53△ null mutant also shows reduced thermotolerance, and expression of HIT1 can partially complement the defect, supporting the possibility of a conserved biological function for Vps53p and HIT1. Collectively, the hit1-1 mutant is the first mutant in higher plant linking a homolog of vesicle tethering factor to both heat and osmotic stress tolerance, providing a new field for studying plant stress responses.
關鍵字(中) ★ 高溫逆境
★ 阿拉伯芥
★ 水份逆境
關鍵字(英) ★ Arabidopsis
★ osmotic stress
★ heat stress
論文目次 中文摘要……………………………………………………………………………………………………….III
英文摘要………………………………………………………………………………………………………….IV
目錄…………………………………………………………………………………………..…………………….VI
Introduction……………………………………………………………………………………………………1
Materials and methods…………………………………………………………………………………4
Results……………………………………………………………………………………………………………..8
Discussion………………………………………………………………………………………………………12
Legend……………………………………………………………………………………………………………16
Reference………………………………………………………………………………………………….…19
Figure……………………………………………………………………………………………………………..23
參考文獻 Advani RJ, Yang B, Prekeris R, Lee KC, Klumperman J, Scheller RH (1999) VAMP-7 mediates vesicular transport from endosomes to lysosomes. J Cell Biol 146: 765-76.
Ashraf M, Saeed MM, Qureshi MJ (1994) Tolerance to high temperature in cotton at initial growth stage. Environ Exp Bot 34:275-283.
Bielenberg DG, Miller JD, Berg VS (2003) Paraheliotropism in two Phaseolus species: combined effects of photon flux density and pulvinux temperature, and consequences for leaf gas exchange. Environmental and Experimental Botany 49: 95-105.
Burke JJ, Upchurch DR (1989) Leaf temperature and transpirational control in cotton. Environmental and experimental botany 29: 487-492
Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55: 2365-84.
Cheung AY, Chen CY, Glaven RH, de Graaf BH, Vidali L, Hepler PK, Wu HM (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14: 945-62.
Clough SJ and Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-743
Conibear E, Cleck JN, Stevens TH (2003) Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol Biol Cell 14: 1610-23.
Conibear E, Stevens TH (2000) Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 11: 305-23.
Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3: 117-24.
Fu QA, Ehleringer JR (1989) Heliotropic leaf movements in common beans controlled by air temperature. Plant Physiol 91:1162-1167
Jenkins GM (2003) The emerging role for sphingolipids in eukaryotic heat shock response. Cell Mol Life Sci 60:701-710.
Jiang Y, Huang B (2001) Osmotic adjustment and root growth associated with drought preconditoning-enhanced heat tolerance in Kentucky bluegrass. Crop Sci 41:1168-1173.
Levine A, Belenghi B, Damari-Weisler H, Granot D (2001) Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem 276: 46284-9.
Levine HA, Tucker AL, Nilsen-Hamilton M (2002) A mathematical model for the role of cell signal transduction in the initiation and inhibition of angiogenesis. Growth Factors 20: 155-75.
Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283: 537-40.
Lin WH, Ye R, Ma H, Xu ZH, Xue HW (2004) DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Res 14: 34-45.
Lobstein E, Guyon A, Ferault M, Twell D, Pelletier G, Bonhomme S (2004) The putative Arabidopsis homolog of yeast vps52p is required for pollen tube elongation, localizes to Golgi, and might be involved in vesicle trafficking. Plant Physiol 135: 1480-90.
Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666: 142-57.
Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54: 265-306.
Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Science 80: 758-763.
Mittler R, Berkowitz G (2001) Hydrogen peroxide, a messenger with too many roles? Redox Rep 6: 69-72.
Morales D, Rodriguez P, Dell'amico J, Nicolas E, Torrecillas A, Sanchez-blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydrauli conductivity in tomato. Bio Plantarum 47:203-208
Munnik T, Meijer HJG (2001) Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Letters 498: 172-178.
Neuner G, Ambach D, Aichner K (1999) Impact of snow cover on photoinhibition and winter dessication in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiol 19: 725-732.
Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25: 141-151.
Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130: 1143-51.
Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134: 1683-96.
Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53: 247-59.
Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124: 1558-69.
Schoffl F, Prandl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117: 1135-41.
Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1-9.
Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
Siniossoglou S, Pelham HR (2001) An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. Embo J 20: 5991-8.
Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8: 179-87.
Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137: 791-3.
Upchurch DR, Mahan JR (1988) Maitenance of constant leaf temperature by plants--II. expermental observations in cotton. 359-366 p.
Wang C, Isoda A, Li Z, Wang P (2004) Transpiration and leaf movement of cotton cultivars grown in the field under arid conditions. Plant Prod. Sci. 7: 266-270.
Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14.
Wang Z, Huang B (2004) Physiological recovery of kentucky bluegrass from simultaneous drought and heat stress. Crop Science Society of America 44: 1729-1736.
Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115: 2627-37.
Wu SJ, Locy RD, Shaw J J, Cherry JH, Singh NK. (2000) Mutantion in Arabidopsis HIT1 locus causing heat and osmotic hypersensitivity. J. Plant physiol. 157: 543-547
Yu F, Berg VS (1994) Control of paraheliotropism in two phaseolus species. Plant Physiol 106: 1567-1573.
Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14: 3009-28.
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2005-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明